@misc{ForjanFrohner, author = {Forjan, Mathias and Frohner, Matthias}, title = {Development of the mCM - mobile circulatory module - for ex-vivo physiological tissue for breathing simulation}, subject = {Lung Simulator}, language = {en} } @misc{PastekaForjan, author = {Pasteka, Richard and Forjan, Mathias}, title = {Evaluation of an Active Lung Simulator for Aerosol Inhalation Test Replacement}, subject = {Lung Simulator}, language = {en} } @misc{DavidForjanTkachenkoBril, author = {David, Veronika and Forjan, Mathias and Tkachenko Bril, Andres Igor}, title = {Klinische Pilotstudie zur Pr{\"u}fung der Machbarkeit und Akzeptanz eines Biofeedbacksystems zur Unterst{\"u}tzung der teilbelastenden Mobilisation}, subject = {eHealth}, language = {de} } @misc{SauermannForjanFrohner, author = {Sauermann, Stefan and Forjan, Mathias and Frohner, Matthias}, title = {Integrating medical devices in hospitals and at home: Challenges \& potentials}, subject = {Electronic Health Records}, language = {en} } @misc{SauermannForjan, author = {Sauermann, Stefan and Forjan, Mathias}, title = {eHealth Strategies on the Move: Researching State of the Art}, subject = {eHealth}, language = {de} } @inproceedings{DavidForjanSchereretal., author = {David, Veronika and Forjan, Mathias and Scherer, Matthias and Reichel, Martin}, title = {Entwicklung und Vorstudien zur Implementierung mobiler Rehabilitationssysteme im h{\"a}uslichen Umfeld}, series = {9. Jahrestagung der deutschen Gesellschaft f{\"u}r Biomechanik (DgfB) 2015}, booktitle = {9. Jahrestagung der deutschen Gesellschaft f{\"u}r Biomechanik (DgfB) 2015}, subject = {Rehabilitation}, language = {de} } @misc{DavidForjanSchereretal., author = {David, Veronika and Forjan, Mathias and Scherer, Matthias and Reichel, Martin}, title = {Entwicklung und Vorstudien zur Implementierung mobiler Rehabilitationssysteme im h{\"a}uslichen Umfeld}, subject = {Rehabilitation}, language = {de} } @inproceedings{DavidForjanMartineketal., author = {David, Veronika and Forjan, Mathias and Martinek, Johannes and Kotzian, Stefan and Jagos, Harald and Rafolt, Dietmar}, title = {Evaluation of Wearable Multimodal Sensor Insoles for Motion-pattern Measurements in Stroke Rehabilitation - a Pilot Study}, series = {IEEE-RAS-EMBS International Conference on Rehabilitation Robotics (ICORR 2017)}, booktitle = {IEEE-RAS-EMBS International Conference on Rehabilitation Robotics (ICORR 2017)}, subject = {Stroke Patients}, language = {en} } @misc{MenseForjanHerzogetal., author = {Mense, Alexander and Forjan, Mathias and Herzog, Juliane and Urbauer, Philipp and Sauermann, Stefan}, title = {Setting up a Virtual Test Environment for User Group Specific Practical Exercises in eHealth eLearning Courses}, subject = {eHealth}, language = {de} } @misc{HerzogForjanSauermannetal., author = {Herzog, Juliane and Forjan, Mathias and Sauermann, Stefan and Mense, Alexander and Urbauer, Philipp}, title = {Development of a Virtual Lab for Practical eLearning in eHealth}, subject = {Virtual Lab}, language = {en} } @misc{UrbauerFrohnerForjanetal., author = {Urbauer, Philipp and Frohner, Matthias and Forjan, Mathias and Pohn, Birgit and Sauermann, Stefan and Mense, Alexander}, title = {Ein Erfahrungsbericht {\"u}ber Kommunikationsstandards und deren Umsetzung im Bereich Telemonitoring: Vom Blutdruckmessger{\"a}t zur elektronischen Gesundheitsakte}, subject = {Telemonitoring}, language = {de} } @misc{DavidForjan, author = {David, Veronika and Forjan, Mathias}, title = {User Centered Design - Einbindung und Nutzung in Forschungsprojekten}, subject = {Research Project}, language = {de} } @misc{UrbauerFrohnerForjanetal., author = {Urbauer, Philipp and Frohner, Matthias and Forjan, Mathias and Pohn, Birgit and Sauermann, Stefan and Mense, Alexander}, title = {A Closer Look on Standards Based Personal Health Device Communication: A R{\´e}sum{\´e} over Four Years Implementing Telemonitoring Solutions}, subject = {eHealth}, language = {en} } @inproceedings{HerzogPohnForjanetal., author = {Herzog, Juliane and Pohn, Birgit and Forjan, Mathias and Sauermann, Stefan and Urbauer, Philipp}, title = {Education for eHealth - A Status Analysis}, series = {Proceedings of eHealth 2014 - Health Informatics Meets Informatics}, booktitle = {Proceedings of eHealth 2014 - Health Informatics Meets Informatics}, subject = {eHealth}, language = {en} } @inproceedings{PastekaForjan, author = {Pasteka, Richard and Forjan, Mathias}, title = {Actively breathing mechanical lung simulator development and preliminary measurements}, series = {IFMBE,volume 65; EMBEC \& NBC 2017}, booktitle = {IFMBE,volume 65; EMBEC \& NBC 2017}, subject = {Biomedical Engineering}, language = {en} } @inproceedings{PastekaForjanDrauschke, author = {Pasteka, Richard and Forjan, Mathias and Drauschke, Andreas}, title = {Comparison of Mathematical and Controlled Mechanical Lung Simulation in Active Breathing and Ventilated State}, series = {Proceedings of the 15th IFAC Conference on Programmable Devices and Embedded Systems PDeS 2018}, booktitle = {Proceedings of the 15th IFAC Conference on Programmable Devices and Embedded Systems PDeS 2018}, subject = {Breathing Simulation}, language = {en} } @inproceedings{SteinerForjanKoppetal., author = {Steiner, Theresa and Forjan, Mathias and Kopp, Tamara and Bures, Zbyn{\^e}k and Drauschke, Andreas}, title = {Enhancements of a mechanical lung simulator for ex vivo measuring of aerosol deposition in lungs}, series = {Proceedings of the 46th annual conference of the German Society for Biomedical Engineering}, booktitle = {Proceedings of the 46th annual conference of the German Society for Biomedical Engineering}, pages = {838 -- 841}, subject = {Lung Simulator}, language = {en} } @article{PastekaSchoellbauerSantosdaCostaetal., author = {Pasteka, Richard and Sch{\"o}llbauer, Lara Alina and Santos da Costa, Joao Pedro and Kolar, Radim and Forjan, Mathias}, title = {Experimental Evaluation of Dry Powder Inhalers During In- and Exhalation Using a Model of the Human Respiratory System (xPULM™)}, series = {Pharmaceutics}, volume = {2022}, journal = {Pharmaceutics}, number = {14/3}, pages = {15}, abstract = {Dry powder inhalers are used by a large number of patients worldwide to treat respiratory diseases. The objective of this work is to experimentally investigate changes in aerosol particle diameter and particle number concentration of pharmaceutical aerosols generated by four dry powder inhalers under realistic inhalation and exhalation conditions. To simulate patients undergoing inhalation therapy, the active respiratory system model (xPULM™) was used. A mechanical upper airway model was developed, manufactured, and introduced as a part of the xPULM™ to represent the human upper respiratory tract with high fidelity. Integration of optical aerosol spectrometry technique into the setup allowed for evaluation of pharmaceutical aerosols. The results show that there is a significant difference (p < 0.05) in mean particle diameter between inhaled and exhaled particles with the majority of the particles depositing in the lung, while particles with the size of (>0.5 μm) are least influenced by deposition mechanisms. The fraction of exhaled particles ranges from 2.13\% (HandiHaler®) over 2.94\% (BreezHaler®), and 6.22\% (Turbohaler®) to 10.24\% (Ellipta®). These values are comparable to previously published studies. Furthermore, the mechanical upper airway model increases the resistance of the overall system and acts as a filter for larger particles (>3 μm). In conclusion, the xPULM™ active respiratory system model is a viable option for studying interactions of pharmaceutical aerosols and the respiratory tract regarding applicable deposition mechanisms. The model strives to support the reduction of animal experimentation in aerosol research and provides an alternative to experiments with human subjects.}, subject = {Biomedical Engineering}, language = {en} } @article{PastekaForjanSauermannetal., author = {Pasteka, Richard and Forjan, Mathias and Sauermann, Stefan and Drauschke, Andreas}, title = {Electro-mechanical Lung Simulator Using Polymer and Organic Human Lung Equivalents for Realistic Breathing Simulation}, series = {Scientific Reports}, volume = {Vol 9}, journal = {Scientific Reports}, number = {No. 1}, pages = {Article number: 19778}, abstract = {Simulation models in respiratory research are increasingly used for medical product development and testing, especially because in-vivo models are coupled with a high degree of complexity and ethical concerns. This work introduces a respiratory simulation system, which is bridging the gap between the complex, real anatomical environment and the safe, cost-effective simulation methods. The presented electro-mechanical lung simulator, xPULM, combines in-silico, ex-vivo and mechanical respiratory approaches by realistically replicating an actively breathing human lung. The reproducibility of sinusoidal breathing simulations with xPULM was verified for selected breathing frequencies (10-18 bpm) and tidal volumes (400-600 ml) physiologically occurring during human breathing at rest. Human lung anatomy was modelled using latex bags and primed porcine lungs. High reproducibility of flow and pressure characteristics was shown by evaluating breathing cycles (nTotal = 3273) with highest standard deviation |3σ| for both, simplified lung equivalents (μV˙ = 23.98 ± 1.04 l/min, μP = -0.78 ± 0.63 hPa) and primed porcine lungs (μV˙ = 18.87 ± 2.49 l/min, μP = -21.13 ± 1.47 hPa). The adaptability of the breathing simulation parameters, coupled with the use of porcine lungs salvaged from a slaughterhouse process, represents an advancement towards anatomically and physiologically realistic modelling of human respiration.}, subject = {Breathing Simulation}, language = {en} } @inproceedings{UrbauerForjan, author = {Urbauer, Philipp and Forjan, Mathias}, title = {Integration of Health and Public Transport Data to Enable Decision Support for Seniors to Reduce Risk of Infection with Communicable Diseases.}, series = {9th International Conference on Software Development and Technologies for Enhancing Accessibility and Fighting Info-exclusion DSAI (2020)}, booktitle = {9th International Conference on Software Development and Technologies for Enhancing Accessibility and Fighting Info-exclusion DSAI (2020)}, subject = {eHealth}, language = {en} }