@article{BachmannSpitzSchaedletal., author = {Bachmann, Barbara and Spitz, Sarah and Sch{\"a}dl, Barbara and Teuschl, Andreas and Redl, Heinz and N{\"u}rnberger, Sylvia and Ertl, Peter}, title = {Stiffness Matters: Fine-Tuned Hydrogel Elasticity Alters Chondrogenic Redifferentiation}, series = {Froniers in Bioengineering and Biotechnology}, volume = {2020}, journal = {Froniers in Bioengineering and Biotechnology}, number = {8}, pages = {373}, abstract = {Biomechanical cues such as shear stress, stretching, compression, and matrix elasticity are vital in the establishment of next generation physiological in vitro tissue models. Matrix elasticity, for instance, is known to guide stem cell differentiation, influence healing processes and modulate extracellular matrix (ECM) deposition needed for tissue development and maintenance. To better understand the biomechanical effect of matrix elasticity on the formation of articular cartilage analogs in vitro, this study aims at assessing the redifferentiation capacity of primary human chondrocytes in three different hydrogel matrices of predefined matrix elasticities. The hydrogel elasticities were chosen to represent a broad spectrum of tissue stiffness ranging from very soft tissues with a Young's modulus of 1 kPa up to elasticities of 30 kPa, representative of the perichondral-space. In addition, the interplay of matrix elasticity and transforming growth factor beta-3 (TGF-β3) on the redifferentiation of primary human articular chondrocytes was studied by analyzing both qualitative (viability, morphology, histology) and quantitative (RT-qPCR, sGAG, DNA) parameters, crucial to the chondrotypic phenotype. Results show that fibrin hydrogels of 30 kPa Young's modulus best guide chondrocyte redifferentiation resulting in a native-like morphology as well as induces the synthesis of physiologic ECM constituents such as glycosaminoglycans (sGAG) and collagen type II. This comprehensive study sheds light onto the mechanobiological impact of matrix elasticity on formation and maintenance of articular cartilage and thus represents a major step toward meeting the need for advanced in vitro tissue models to study both re- and degeneration of articular cartilage.}, subject = {Tissue Engineering}, language = {en} } @article{SlezakSlezakHartingeretal., author = {Slezak, Paul and Slezak, Cyrill and Hartinger, Joachim and Teuschl, Andreas and N{\"u}rnberger, Sylvia and Redl, Heinz and Mittermayr, Rainer}, title = {A Low Cost Implantation Model in the Rat That Allows a Spatial Assessment of Angiogenesis.}, series = {Frontiers in Bioengineering and Biotechnology}, journal = {Frontiers in Bioengineering and Biotechnology}, abstract = {There is continual demand for animal models that allow a quantitative assessment of angiogenic properties of biomaterials, therapies, and pharmaceuticals. In its simplest form, this is done by subcutaneous material implantation and subsequent vessel counting which usually omits spatial data. We have refined an implantation model and paired it with a computational analytic routine which outputs not only vessel count but also vessel density, distribution, and vessel penetration depth, that relies on a centric vessel as a reference point. We have successfully validated our model by characterizing the angiogenic potential of a fibrin matrix in conjunction with recombinant human vascular endothelial growth factor (rhVEGF165). The inferior epigastric vascular pedicles of rats were sheathed with silicone tubes, which were subsequently filled with 0.2 ml of fibrin and different doses of rhVEGF165, centrically embedding the vessels. Over 4 weeks, tissue samples were harvested and subsequently immunohistologically stained and computationally analyzed. The model was able to detect variations over the angiogenic potentials of growth factor spiked fibrin matrices. Adding 20 ng of rhVEGF165 resulted in a significant increase in vasculature while 200 ng of rhVEGF165 did not improve vascular growth. Vascularized tissue volume increased during the first week and vascular density increased during the second week. Total vessel count increased significantly and exhibited a peak after 2 weeks which was followed by a resorption of vasculature by week 4. In summary, a simple implantation model to study in vivo vascularization with only a minimal workload attached was enhanced to include morphologic data of the emerging vascular tree.}, subject = {Tissue Engineering}, language = {en} } @misc{TeuschlHeimelMonforteVilaetal., author = {Teuschl, Andreas and Heimel, Patrick and Monforte Vila, Xavier and N{\"u}rnberger, Sylvia and Tangl, Stefan and van Griensven, Martijn and Redl, Heinz and Nau, Thomas}, title = {Anterior cruciate ligament regeneration using the silk-based RegACL scaffold}, subject = {Tissue Engineering}, language = {en} } @article{SchneiderLehmannvanOschetal., author = {Schneider, Cornelia and Lehmann, Johannes and van Osch, Gerjo and Hildner, Florian and Teuschl, Andreas and Monforte Vila, Xavier and Miosga, David and Heimel, Patrick and Priglinger, Eleni and Redl, Heinz and Wolbank, Susanne and N{\"u}rnberger, Sylvia}, title = {Systematic Comparison of Protocols for the Preparation of Human Articular Cartilage for Use as Scaffold Material in Cartilage Tissue Engineering}, series = {Tissue Eng Part C Methods}, volume = {22}, journal = {Tissue Eng Part C Methods}, number = {12}, subject = {Cartilage}, language = {en} } @misc{TeuschlHeimelNuernbergeretal., author = {Teuschl, Andreas and Heimel, Patrick and N{\"u}rnberger, Sylvia and Redl, Heinz and Nau, Thomas}, title = {ACL Regeneration using a novel silk fiber based scaffold - Histological Results of a Large Animal Study}, subject = {Tissue Regeneration}, language = {en} } @article{TeuschlHeimelNuernbergeretal., author = {Teuschl, Andreas and Heimel, Patrick and N{\"u}rnberger, Sylvia and van Griensven, Martijn and Redl, Heinz and Nau, Thomas}, title = {A Novel Silk Fiber-Based Scaffold for Regeneration of the Anterior Cruciate Ligament: Histological Results From a Study in Sheep.}, series = {The American Journal of Sports Medicine}, journal = {The American Journal of Sports Medicine}, subject = {Ligament}, language = {en} } @misc{TeuschlFuchsFeichtingeretal., author = {Teuschl, Andreas and Fuchs, Christiane and Feichtinger, Georg and Heher, Philipp and Heimel, Patrick and Schuh, Christina and N{\"u}rnberger, Sylvia and Nau, Thomas and R{\"u}nzler, Dominik and Redl, Heinz}, title = {Fibrin or Fibroin - Not only the "o" Makes the Difference}, subject = {Fibrin}, language = {en} } @misc{TeuschlNuernbergerHeimeletal., author = {Teuschl, Andreas and N{\"u}rnberger, Sylvia and Heimel, Patrick and Redl, Heinz and Nau, Thomas}, title = {Regeneration of the Anterior Cruciate Ligament Using a Silk-Fiber Based Scaffold - Histological Results}, subject = {Tissue Regeneration}, language = {en} } @article{BanerjeeNuernbergerHennerbichleretal., author = {Banerjee, Asmita and N{\"u}rnberger, Sylvia and Hennerbichler, Simone and Riedl, Stefan and Schuh, Christina and Hacobian, Ara and Teuschl, Andreas and Eibl, J{\"u}rgen and Redl, Heinz}, title = {In toto differentiation of human amniotic membrane towards the Schwann cell lineage}, series = {227-239}, volume = {15}, journal = {227-239}, number = {2}, subject = {Membrane}, language = {en} } @article{TeuschlNuernbergerRedletal., author = {Teuschl, Andreas and N{\"u}rnberger, Sylvia and Redl, Heinz and Nau, Thomas}, title = {Articular cartilage tissue regeneration: current research strategies and outlook for the future}, series = {European Surgery}, volume = {45}, journal = {European Surgery}, number = {3}, pages = {142 -- 153}, subject = {Tissue Regeneration}, language = {en} }