@article{MaleinerTomaschHeheretal., author = {Maleiner, Babette and Tomasch, Janine and Heher, Philipp and Spadiut, Oliver and R{\"u}nzler, Dominik and Fuchs, Christiane}, title = {The Importance of Biophysical and Biochemical Stimuli in Dynamic Skeletal Muscle Models.}, series = {Frontiers in Physiology}, journal = {Frontiers in Physiology}, abstract = {Classical approaches to engineer skeletal muscle tissue based on current regenerative and surgical procedures still do not meet the desired outcome for patient applications. Besides the evident need to create functional skeletal muscle tissue for the repair of volumetric muscle defects, there is also growing demand for platforms to study muscle-related diseases, such as muscular dystrophies or sarcopenia. Currently, numerous studies exist that have employed a variety of biomaterials, cell types and strategies for maturation of skeletal muscle tissue in 2D and 3D environments. However, researchers are just at the beginning of understanding the impact of different culture settings and their biochemical (growth factors and chemical changes) and biophysical cues (mechanical properties) on myogenesis. With this review we intend to emphasize the need for new in vitro skeletal muscle (disease) models to better recapitulate important structural and functional aspects of muscle development. We highlight the importance of choosing appropriate system components, e.g., cell and biomaterial type, structural and mechanical matrix properties or culture format, and how understanding their interplay will enable researchers to create optimized platforms to investigate myogenesis in healthy and diseased tissue. Thus, we aim to deliver guidelines for experimental designs to allow estimation of the potential influence of the selected skeletal muscle tissue engineering setup on the myogenic outcome prior to their implementation. Moreover, we offer a workflow to facilitate identifying and selecting different analytical tools to demonstrate the successful creation of functional skeletal muscle tissue. Ultimately, a refinement of existing strategies will lead to further progression in understanding important aspects of muscle diseases, muscle aging and muscle regeneration to improve quality of life of patients and enable the establishment of new treatment options.}, subject = {Bioreactor}, language = {en} } @article{SchuhHeherWeihsetal., author = {Schuh, Christina and Heher, Philipp and Weihs, Anna and Fuchs, Christiane and Gabriel, Christian and Wolbank, Susanne and Mittermayr, Rainer and Redl, Heinz and R{\"u}nzler, Dominik and Teuschl, Andreas}, title = {In vitro extracorporeal shock wave treatment enhances stemness and preserves multipotency of rat and human adipose-derived stem cells}, series = {Journal of Cytotherapy}, journal = {Journal of Cytotherapy}, subject = {Shockwave}, language = {en} } @article{HeherMaleinerPruelleretal., author = {Heher, Philipp and Maleiner, Babette and Pr{\"u}ller, Johanna and Teuschl, Andreas and Kollmitzer, Josef and Monforte Vila, Xavier and Wolbank, Susanne and Redl, Heinz and R{\"u}nzler, Dominik and Fuchs, Christiane}, title = {A novel bioreactor for the generation of highly aligned 3D skeletal muscle-like constructs through orientation of fibrin via application of static strain}, series = {Acta Biomaterialia}, journal = {Acta Biomaterialia}, subject = {Bioreactor}, language = {en} } @article{TeuschlSchuhHalbweisetal., author = {Teuschl, Andreas and Schuh, Christina and Halbweis, Robert and Pajer, Krisztian and Marton, Gabor and Hopf, Rudolf and Mosia, Shorena and R{\"u}nzler, Dominik and Redl, Heinz and Nogradi, Antal and Hausner, Thomas}, title = {A new preparation method for anisotropic silk fibroin nerve guidance conduits and its evaluation in vitro and in a rat sciatic nerve defect model}, series = {Tissue Engineering Part C: Methods}, journal = {Tissue Engineering Part C: Methods}, subject = {Fibrin}, language = {en} } @article{WeihsFuchsTeuschletal., author = {Weihs, Anna and Fuchs, Christiane and Teuschl, Andreas and Hartinger, Joachim and Slezak, Paul and Mittermayr, Rainer and Redl, Heinz and Junger, Wolfgang and Sitte, Harald and R{\"u}nzler, Dominik}, title = {Shock Wave Treatment Enhances Cell Proliferation and Improves Wound Healing by ATP Release-coupled Extracellular Signal-regulated Kinase (ERK) Activation}, series = {The Journal of biological chemistry}, journal = {The Journal of biological chemistry}, subject = {Shockwave}, language = {de} } @article{SchuhHeherWeihsetal., author = {Schuh, Christina and Heher, Philipp and Weihs, Anna and Asmita, Banerjee and Wolbank, Susanne and Mittermayr, Rainer and Redl, Heinz and R{\"u}nzler, Dominik and Teuschl, Andreas}, title = {Adipose derived stem cells respond to in vitro extracorporeal shockwave treatment with increased stemness and multipotency}, series = {New Biotechnology}, journal = {New Biotechnology}, subject = {Shockwave}, language = {en} } @article{TeuschlNeutschMonforteVilaetal., author = {Teuschl, Andreas and Neutsch, Lukas and Monforte Vila, Xavier and R{\"u}nzler, Dominik and van Griensven, Martijn and Gabor, Franz and Redl, Heinz}, title = {Enhanced cell adhesion on silk fibroin via lectin surface modification.}, series = {Acta Biomaterialia}, journal = {Acta Biomaterialia}, subject = {Silk}, language = {en} } @article{SchuhBanerjeeMosiaetal., author = {Schuh, Christina and Banerjee, Asmita and Mosia, Shorena and Hopf, Rudolf and Grasl, Christian and Schima, Heinrich and Schmidhammer, Robert and Redl, Heinz and R{\"u}nzler, Dominik and Morton, Tatjana J.}, title = {Activated Schwann-like cells guided by fibrin structures enhance Axonal Regeneration}, series = {JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE}, volume = {2012}, journal = {JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE}, number = {vol. 6/no. 1}, subject = {Cells}, language = {en} } @article{RiederWeihsTeuschletal., author = {Rieder, Bernhard and Weihs, Anna and Teuschl, Andreas and Knebl, Gerald and Kollmitzer, Josef and Redl, Heinz and R{\"u}nzler, Dominik}, title = {Evaluation of cell response on permanent and pulsed atmospheric pressure stressed cells}, series = {Journal of Tissue Engineering and Regenerative Medicine}, volume = {1}, journal = {Journal of Tissue Engineering and Regenerative Medicine}, number = {6}, pages = {240 -- 240}, subject = {Cells}, language = {en} } @article{WeihsJungerSchadenetal., author = {Weihs, Anna and Junger, Wolfgang and Schaden, Wolfgang and Sitte, Harald and R{\"u}nzler, Dominik}, title = {Extracorporeal shockwave treatment induced extracellular ATP release - a potential mechanism to activate wound healing}, series = {Journal of Tissue Engineering and Regenerative Medicine}, volume = {1}, journal = {Journal of Tissue Engineering and Regenerative Medicine}, number = {6}, pages = {381 -- 381}, subject = {Shockwave treatment}, language = {en} }