@article{RothbauerByrneSchobesbergeretal., author = {Rothbauer, Mario and Byrne, Ruth A. and Schobesberger, Silvia and Olmos Calvo, Isabel and Fischer, Anita and Reihs, Eva I. and Spitz, Sarah and Bachmann, Barbara and Sevelda, Florian and Holinka, Johannes and Holnthoner, Wolfgang and Redl, Heinz and Toegel, Stefan and Windhager, Reinhard and Kiener, Hans P. and Ertl, Peter}, title = {Establishment of a human three-dimensional chip-based chondro-synovial coculture joint model for reciprocal cross talk studies in arthritis research}, series = {Lab on a Chip}, volume = {2021}, journal = {Lab on a Chip}, number = {21}, pages = {4128 -- 4143}, abstract = {Rheumatoid arthritis is characterised by a progressive, intermittent inflammation at the synovial membrane, which ultimately leads to the destruction of the synovial joint. The synovial membrane as the joint capsule's inner layer is lined with fibroblast-like synoviocytes that are the key player supporting persistent arthritis leading to bone erosion and cartilage destruction. While microfluidic models that model molecular aspects of bone erosion between bone-derived cells and synoviocytes have been established, RA's synovial-chondral axis has not yet been realised using a microfluidic 3D model based on human patient in vitro cultures. Consequently, we established a chip-based three-dimensional tissue coculture model that simulates the reciprocal cross talk between individual synovial and chondral organoids. When co-cultivated with synovial organoids, we could demonstrate that chondral organoids induce a higher degree of cartilage physiology and architecture and show differential cytokine response compared to their respective monocultures highlighting the importance of reciprocal tissue-level cross talk in the modelling of arthritic diseases.}, subject = {Tissue Engineering}, language = {en} }