@article{PriglingerSchuhSteffenhagenetal., author = {Priglinger, Eleni and Schuh, Christina and Steffenhagen, Carolin and Wurzer, Christoph and Maier, Julia and N{\"u}rnberger, Sylvia and Holnthoner, Wolfgang and Fuchs, Christiane and Suessner, Susanne and R{\"u}nzler, Dominik and Redl, Heinz and Wolbank, Susanne}, title = {Improvement of adipose tissue-derived cells by low-energy extracorporeal shock wave therapy.}, series = {Cytotherapy}, journal = {Cytotherapy}, pages = {1079 -- 1095}, abstract = {BACKGROUND: Cell-based therapies with autologous adipose tissue-derived cells have shown great potential in several clinical studies in the last decades. The majority of these studies have been using the stromal vascular fraction (SVF), a heterogeneous mixture of fibroblasts, lymphocytes, monocytes/macrophages, endothelial cells, endothelial progenitor cells, pericytes and adipose-derived stromal/stem cells (ASC) among others. Although possible clinical applications of autologous adipose tissue-derived cells are manifold, they are limited by insufficient uniformity in cell identity and regenerative potency. METHODS: In our experimental set-up, low-energy extracorporeal shock wave therapy (ESWT) was performed on freshly obtained human adipose tissue and isolated adipose tissue SVF cells aiming to equalize and enhance stem cell properties and functionality. RESULTS: After ESWT on adipose tissue we could achieve higher cellular adenosine triphosphate (ATP) levels compared with ESWT on the isolated SVF as well as the control. ESWT on adipose tissue resulted in a significantly higher expression of single mesenchymal and vascular marker compared with untreated control. Analysis of SVF protein secretome revealed a significant enhancement in insulin-like growth factor (IGF)-1 and placental growth factor (PLGF) after ESWT on adipose tissue. DISCUSSION: Summarizing we could show that ESWT on adipose tissue enhanced the cellular ATP content and modified the expression of single mesenchymal and vascular marker, and thus potentially provides a more regenerative cell population. Because the effectiveness of autologous cell therapy is dependent on the therapeutic potency of the patient's cells, this technology might raise the number of patients eligible for autologous cell transplantation.}, subject = {Shockwave Therapy}, language = {en} } @article{BachmannSpitzRothbaueretal., author = {Bachmann, Barbara and Spitz, Sarah and Rothbauer, Mario and Jordan, Christian and Purtscher, Michaela and Zirath, Helene and Schuller, Patrick and Eilenberger, Christoph and Ali, Syed Faheem and M{\"u}hleder, Severin and Priglinger, Eleni and Harasek, Michael and Redl, Heinz and Holnthoner, Wolfgang and Ertl, Peter}, title = {Engineering of three-dimensional pre-vascular networks within fibrin hydrogel constructs by microfluidic control over reciprocal cell signaling}, series = {Biomicrofluidics}, journal = {Biomicrofluidics}, subject = {Microfluidic}, language = {en} } @misc{SchneiderAignerMonforteVilaetal., author = {Schneider, Karl Heinrich and Aigner, Petra and Monforte Vila, Xavier and Holnthoner, Wolfgang and Teuschl, Andreas and Bergmeister, Helga and Redl, Heinz}, title = {Naturally derived acellular small diameter vascular grafts from human placenta for reconstructive surgery}, subject = {Placenta}, language = {en} } @article{SchneiderPultarOesterreicheretal., author = {Schneider, Jaana and Pultar, Marianne and Oesterreicher, Johannes and Bobbili, Madhusudhan Reddy and M{\"u}hleder, Severin and Priglinger, Eleni and Redl, Heinz and Spittler, Andreas and Grillari, Johannes and Holnthoner, Wolfgang}, title = {Cre mRNA Is Not Transferred by EVs from Endothelial and Adipose-Derived Stromal/Stem Cells during Vascular Network Formation}, series = {Int J Mol Sci.}, volume = {2021}, journal = {Int J Mol Sci.}, number = {22(8)}, pages = {4050}, abstract = {Coculture systems employing adipose tissue-derived mesenchymal stromal/stem cells (ASC) and endothelial cells (EC) represent a widely used technique to model vascularization. Within this system, cell-cell communication is crucial for the achievement of functional vascular network formation. Extracellular vesicles (EVs) have recently emerged as key players in cell communication by transferring bioactive molecules between cells. In this study we aimed to address the role of EVs in ASC/EC cocultures by discriminating between cells, which have received functional EV cargo from cells that have not. Therefore, we employed the Cre-loxP system, which is based on donor cells expressing the Cre recombinase, whose mRNA was previously shown to be packaged into EVs and reporter cells containing a construct of floxed dsRed upstream of the eGFP coding sequence. The evaluation of Cre induced color switch in the reporter system via EVs indicated that there is no EV-mediated RNA transmission either between EC themselves or EC and ASC. However, since Cre mRNA was not found present in EVs, it remains unclear if Cre mRNA is generally not packaged into EVs or if EVs are not taken up by the utilized cell types. Our data indicate that this technique may not be applicable to evaluate EV-mediated cell-to-cell communication in an in vitro setting using EC and ASC. Further investigations will require a functional system showing efficient and specific loading of Cre mRNA or protein into EVs.}, subject = {Tissue Engineering}, language = {en} } @article{NuernbergerSchneidervanOschetal., author = {N{\"u}rnberger, Sylvia and Schneider, Cornelia and van Osch, Gerjo and Keibl, Claudia and Rieder, Bernhard and Monforte, Xavier and Teuschl, Andreas and M{\"u}hleder, Severin and Holnthoner, Wolfgang and Sch{\"a}dl, Barbara and Gahleitner, Christoph and Redl, Heinz and Wolbank, Susanne}, title = {Repopulation of an auricular cartilage scaffold, AuriScaff, perforated with an enzyme combination.}, series = {Acta Biomaterialia}, journal = {Acta Biomaterialia}, subject = {Tissue Engineering}, language = {en} } @article{JohannesWeihsKarneretal., author = {Johannes, Hackethal and Weihs, Anna and Karner, Lisa and Metzger, Magdalena and Dungel, Peter and Hennerbichler, Simone and Redl, Heinz and Teuschl-Woller, Andreas Herbert}, title = {Novel Human Placenta-Based Extract for Vascularization Strategies in Tissue Engineering}, series = {Tissue Eng Part C Methods}, volume = {27}, journal = {Tissue Eng Part C Methods}, number = {11}, pages = {616 -- 632}, abstract = {There is critical unmet need for new vascularized tissues to support or replace injured tissues and organs. Various synthetic and natural materials were already established for use of two-dimensional (2D) and three-dimensional (3D) in vitro neovascularization assays, however, they still cannot mimic the complex functions of the sum of the extracellular matrix (ECM) in native intact tissue. Currently, this issue is only addressed by artificial products such as Matrigel™, which comprises a complex mixture of ECM proteins, extracted from animal tumor tissue. Despite its outstanding bioactivity, the isolation from tumor tissue hinders its translation into clinical applications. Since nonhuman ECM proteins may cause immune reactions, as are frequently observed in clinical trials, human ECM proteins represent the best option when aiming for clinical applications. Here, we describe an effective method of isolating a human placenta substrate (hpS) that induces the spontaneous formation of an interconnected network of green fluorescence-labeled human umbilical vein endothelial cells (gfpHUVECs) in vitro. The substrate was biochemically characterized by using a combination of bicinchoninic acid (BCA) assay, DNA, and glycosaminoglycan (GAG) content assays, sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) analysis and Western blot, angiogenesis arrays, chromatographic thrombin detection, high performance liquid chromatography (HPLC)-based amino acid quantification analysis, and assessment of antimicrobial properties. 2D in vitro cell culture experiments have been performed to determine the vasculogenic potential of hpS, which demonstrated that cell networks developed on hpS show a significantly higher degree of complexity (number of tubules/junctions; total/mean tube length) when compared with Matrigel. As 3D cell culture techniques represent a more accurate representation of the in vivo condition, the substrate was 3D solidified using various natural polymers. 3D in vitro vasculogenesis assays have been performed by seeding gfpHUVECs in an hpS-fibrinogen clot. In conclusion, hpS provides a potent human/material-based alternative to xenogenic-material-based biomaterials for vascularization strategies in tissue engineering.}, subject = {Tissue Engineering}, language = {en} } @inproceedings{KneblMortonRedletal., author = {Knebl, Gerald and Morton, Tatjana J. and Redl, Heinz and R{\"u}nzler, Dominik}, title = {Mechanical stimulation of cells in 3-dimensional fibrin constructs using a bioreactor}, series = {3. Forschungsforum der {\"o}sterreichischen Fachhochschulen / Fachhochschule K{\"a}rnten}, booktitle = {3. Forschungsforum der {\"o}sterreichischen Fachhochschulen / Fachhochschule K{\"a}rnten}, pages = {492 -- 493}, subject = {Cells}, language = {en} } @article{SchneiderAignerHolnthoneretal., author = {Schneider, Karl Heinrich and Aigner, Petra and Holnthoner, Wolfgang and Monforte Vila, Xavier and N{\"u}rnberger, Sylvia and R{\"u}nzler, Dominik and Redl, Heinz and Teuschl, Andreas}, title = {Decellularized human placenta chorion matrix as a favorable source of small-diameter vascular grafts}, series = {Acta Biomaterialia}, journal = {Acta Biomaterialia}, subject = {Grafting}, language = {en} } @article{HeimelSwiadekSlezaketal., author = {Heimel, Patrick and Swiadek, Nicole V. and Slezak, Paul and Kerbl, Markus and Schneider, Cornelia and N{\"u}rnberger, Sylvia and Redl, Heinz and Teuschl, Andreas and Hercher, David}, title = {Iodine-Enhanced Micro-CT Imaging of Soft Tissue on the Example of Peripheral Nerve Regeneration}, series = {Contrast Media \& Molecular Imaging}, journal = {Contrast Media \& Molecular Imaging}, subject = {µCT}, language = {en} } @article{RohringerHolnthonerHackletal., author = {Rohringer, Sabrina and Holnthoner, Wolfgang and Hackl, Matthias and Weihs, Anna and R{\"u}nzler, Dominik and Skalicky, Susanna and Karbiener, Michael and Scheideler, Marcel and Pr{\"o}ll, Johannes and Gabriel, Christian and Schweighofer, Bernhard and Gr{\"o}ger, Marion and Spittler, Andreas and Grillari, Johannes and Redl, Heinz}, title = {Molecular and cellular effects of in vitro shockwave treatment on lymphatic endothelial cells.}, series = {PLoS one}, journal = {PLoS one}, subject = {Shockwave}, language = {en} }