@article{BachmannSpitzSchaedletal., author = {Bachmann, Barbara and Spitz, Sarah and Sch{\"a}dl, Barbara and Teuschl, Andreas and Redl, Heinz and N{\"u}rnberger, Sylvia and Ertl, Peter}, title = {Stiffness Matters: Fine-Tuned Hydrogel Elasticity Alters Chondrogenic Redifferentiation}, series = {Froniers in Bioengineering and Biotechnology}, volume = {2020}, journal = {Froniers in Bioengineering and Biotechnology}, number = {8}, pages = {373}, abstract = {Biomechanical cues such as shear stress, stretching, compression, and matrix elasticity are vital in the establishment of next generation physiological in vitro tissue models. Matrix elasticity, for instance, is known to guide stem cell differentiation, influence healing processes and modulate extracellular matrix (ECM) deposition needed for tissue development and maintenance. To better understand the biomechanical effect of matrix elasticity on the formation of articular cartilage analogs in vitro, this study aims at assessing the redifferentiation capacity of primary human chondrocytes in three different hydrogel matrices of predefined matrix elasticities. The hydrogel elasticities were chosen to represent a broad spectrum of tissue stiffness ranging from very soft tissues with a Young's modulus of 1 kPa up to elasticities of 30 kPa, representative of the perichondral-space. In addition, the interplay of matrix elasticity and transforming growth factor beta-3 (TGF-β3) on the redifferentiation of primary human articular chondrocytes was studied by analyzing both qualitative (viability, morphology, histology) and quantitative (RT-qPCR, sGAG, DNA) parameters, crucial to the chondrotypic phenotype. Results show that fibrin hydrogels of 30 kPa Young's modulus best guide chondrocyte redifferentiation resulting in a native-like morphology as well as induces the synthesis of physiologic ECM constituents such as glycosaminoglycans (sGAG) and collagen type II. This comprehensive study sheds light onto the mechanobiological impact of matrix elasticity on formation and maintenance of articular cartilage and thus represents a major step toward meeting the need for advanced in vitro tissue models to study both re- and degeneration of articular cartilage.}, subject = {Tissue Engineering}, language = {en} } @article{NuernbergerSchneiderKeibletal., author = {N{\"u}rnberger, S. and Schneider, C. and Keibl, C. and Sch{\"a}dl, Barbara and Heimel, P. and Monforte, X. and Teuschl, A. H. and Nalbach, M. and Thurner, P. J. and Grillari, J. and Redl, Heinz and Wolbank, S.}, title = {Repopulation of decellularised articular cartilage by laser-based matrix engraving}, series = {EBioMedicine.}, volume = {64}, journal = {EBioMedicine.}, number = {103196.}, abstract = {Background: In spite of advances in the treatment of cartilage defects using cell and scaffold-based therapeutic strategies, the long-term outcome is still not satisfying since clinical scores decline years after treatment. Scaffold materials currently used in clinical settings have shown limitations in providing suitable biomechanical properties and an authentic and protective environment for regenerative cells. To tackle this problem, we developed a scaffold material based on decellularised human articular cartilage. Methods: Human articular cartilage matrix was engraved using a CO2 laser and treated for decellularisation and glycosaminoglycan removal. Characterisation of the resulting scaffold was performed via mechanical testing, DNA and GAG quantification and in vitro cultivation with adipose-derived stromal cells (ASC). Cell vitality, adhesion and chondrogenic differentiation were assessed. An ectopic, unloaded mouse model was used for the assessment of the in vivo performance of the scaffold in combination with ASC and human as well as bovine chondrocytes. The novel scaffold was compared to a commercial collagen type I/III scaffold. Findings: Crossed line engravings of the matrix allowed for a most regular and ubiquitous distribution of cells and chemical as well as enzymatic matrix treatment was performed to increase cell adhesion. The biomechanical characteristics of this novel scaffold that we term CartiScaff were found to be superior to those of commercially available materials. Neo-tissue was integrated excellently into the scaffold matrix and new collagen fibres were guided by the laser incisions towards a vertical alignment, a typical feature of native cartilage important for nutrition and biomechanics. In an ectopic, unloaded in vivo model, chondrocytes and mesenchymal stromal cells differentiated within the incisions despite the lack of growth factors and load, indicating a strong chondrogenic microenvironment within the scaffold incisions. Cells, most noticeably bone marrow-derived cells, were able to repopulate the empty chondrocyte lacunae inside the scaffold matrix. Interpretation: Due to the better load-bearing, its chondrogenic effect and the ability to guide matrix-deposition, CartiScaff is a promising biomaterial to accelerate rehabilitation and to improve long term clinical success of cartilage defect treatment. Funding: Austrian Research Promotion Agency FFG ("CartiScaff" \#842455), Lorenz B{\"o}hler Fonds (16/13), City of Vienna Competence Team Project Signaltissue (MA23, \#18-08). Keywords: Cartilage regeneration; Decellularisation; Ectopic animal model; Laser engraving; Mechanical testing; Repopulation.}, subject = {Tissue Engineering}, language = {en} } @article{NuernbergerSchneidervanOschetal., author = {N{\"u}rnberger, Sylvia and Schneider, Cornelia and van Osch, Gerjo and Keibl, Claudia and Rieder, Bernhard and Monforte, Xavier and Teuschl, Andreas and M{\"u}hleder, Severin and Holnthoner, Wolfgang and Sch{\"a}dl, Barbara and Gahleitner, Christoph and Redl, Heinz and Wolbank, Susanne}, title = {Repopulation of an auricular cartilage scaffold, AuriScaff, perforated with an enzyme combination.}, series = {Acta Biomaterialia}, journal = {Acta Biomaterialia}, subject = {Tissue Engineering}, language = {en} } @article{HeinzelOberhauserKeibletal., author = {Heinzel, Johannes Christoph and Oberhauser, Viola and Keibl, Claudia and Sch{\"a}dl, Barbara and Swiadek, Nicole V. and L{\"a}ngle, Gregor and Frick, Helen and Slezak, Cyrill and Prahm, Cosima and Grillari, Johannes and Kolbenschlag, Jonas and Hercher, David}, title = {ESWT Diminishes Axonal Regeneration following Repair of the Rat Median Nerve with Muscle-In-Vein Conduits but Not after Autologous Nerve Grafting}, series = {Biomedicines}, volume = {2022}, journal = {Biomedicines}, number = {10(8)}, pages = {1777}, abstract = {Investigations reporting positive effects of extracorporeal shockwave therapy (ESWT) on nerve regeneration are limited to the rat sciatic nerve model. The effects of ESWT on muscle-in-vein conduits (MVCs) have also not been investigated yet. This study aimed to evaluate the effects of ESWT after repair of the rat median nerve with either autografts (ANGs) or MVCs. In male Lewis rats, a 7 mm segment of the right median nerve was reconstructed either with an ANG or an MVC. For each reconstructive technique, one group of animals received one application of ESWT while the other rats served as controls. The animals were observed for 12 weeks, and nerve regeneration was assessed using computerized gait analysis, the grasping test, electrophysiological evaluations and histological quantification of axons, blood vessels and lymphatic vasculature. Here, we provide for the first time a comprehensive analysis of ESWT effects on nerve regeneration in a rat model of median nerve injury. Furthermore, this study is among the first reporting the quantification of lymphatic vessels following peripheral nerve injury and reconstruction in vivo. While we found no significant direct positive effects of ESWT on peripheral nerve regeneration, results following nerve repair with MVCs were significantly inferior to those after ANG repair.}, subject = {Tissue Engineering}, language = {en} } @article{StrohmeierHofmannJacaketal., author = {Strohmeier, Karin and Hofmann, Martina and Jacak, Jaroslaw and Narzt, Marie-Sophie and Wahlmueller, Marlene and Mairhofer, Mario and Sch{\"a}dl, Barbara and Holnthoner, Wolfgang and Barsch, Martin and Sandhofer, Matthias and Wolbank, Susanne and Priglinger, Eleni}, title = {Multi-Level Analysis of Adipose Tissue Reveals the Relevance of Perivascular Subpopulations and an Increased Endothelial Permeability in Early-Stage Lipedema}, series = {Biomedicines}, volume = {2022}, journal = {Biomedicines}, number = {10(5)}, pages = {1163}, abstract = {Lipedema is a chronic, progressive disease of adipose tissue with unknown etiology. Based on the relevance of the stromal vascular fraction (SVF) cell population in lipedema, we performed a thorough characterization of subcutaneous adipose tissue, SVF isolated thereof and the sorted populations of endothelial cells (EC), pericytes and cultured adipose-derived stromal/stem cells (ASC) of early-stage lipedema patients. We employed histological and gene expression analysis and investigated the endothelial barrier by immunofluorescence and analysis of endothelial permeability in vitro. Although there were no significant differences in histological stainings, we found altered gene expression of factors relevant for local estrogen metabolism (aromatase), preadipocyte commitment (ZNF423) and immune cell infiltration (CD11c) in lipedema on the tissue level, as well as in distinct cellular subpopulations. Machine learning analysis of immunofluorescence images of CD31 and ZO-1 revealed a morphological difference in the cellular junctions of EC cultures derived from healthy and lipedema individuals. Furthermore, the secretome of lipedema-derived SVF cells was sufficient to significantly increase leakiness of healthy human primary EC, which was also reflected by decreased mRNA expression of VE-cadherin. Here, we showed for the first time that the secretome of SVF cells creates an environment that triggers endothelial barrier dysfunction in early-stage lipedema. Moreover, since alterations in gene expression were detected on the cellular and/or tissue level, the choice of sample material is of high importance in elucidating this complex disease.}, subject = {Tissue Engineering}, language = {en} } @article{HromadaHartmannOesterreicheretal., author = {Hromada, Carina and Hartmann, Jaana and Oesterreicher, Johannes and Stoiber, Anton and Daerr, Anna and Sch{\"a}dl, Barbara and Priglinger, Eleni and Teuschl-Woller, Andreas H. and Holnthoner, Wolfgang and Heinzel, Johannes Christoph and Hercher, David}, title = {Occurrence of Lymphangiogenesis in Peripheral Nerve Autografts Contrasts Schwann Cell-Induced Apoptosis of Lymphatic Endothelial Cells In Vitro}, series = {Biomolecules}, volume = {2022}, journal = {Biomolecules}, number = {12, 6}, pages = {820}, abstract = {Peripheral nerve injuries pose a major clinical concern world-wide, and functional recovery after segmental peripheral nerve injury is often unsatisfactory, even in cases of autografting. Although it is well established that angiogenesis plays a pivotal role during nerve regeneration, the influence of lymphangiogenesis is strongly under-investigated. In this study, we analyzed the presence of lymphatic vasculature in healthy and regenerated murine peripheral nerves, revealing that nerve autografts contained increased numbers of lymphatic vessels after segmental damage. This led us to elucidate the interaction between lymphatic endothelial cells (LECs) and Schwann cells (SCs) in vitro. We show that SC and LEC secretomes did not influence the respective other cell types' migration and proliferation in 2D scratch assay experiments. Furthermore, we successfully created lymphatic microvascular structures in SC-embedded 3D fibrin hydrogels, in the presence of supporting cells; whereas SCs seemed to exert anti-lymphangiogenic effects when cultured with LECs alone. Here, we describe, for the first time, increased lymphangiogenesis after peripheral nerve injury and repair. Furthermore, our findings indicate a potential lymph-repellent property of SCs, thereby providing a possible explanation for the lack of lymphatic vessels in the healthy endoneurium. Our results highlight the importance of elucidating the molecular mechanisms of SC-LEC interaction.}, subject = {Tissue Engineering}, language = {en} } @article{AshmwePosaRuehrnoessletal., author = {Ashmwe, Mohamed and Posa, Katja and R{\"u}hrn{\"o}ßl, Alexander and Heinzel, Johannes Christoph and Heimel, Patrick and Mock, Michael and Sch{\"a}dl, Barbara and Keibl, Claudia and Couillard-Despres, Sebastien and Redl, Heinz and Mittermayr, Rainer and Hercher, David}, title = {Effects of Extracorporeal Shockwave Therapy on Functional Recovery and Circulating miR-375 and miR-382-5p after Subacute and Chronic Spinal Cord Contusion Injury in Rats}, series = {Biomedicines}, volume = {2022}, journal = {Biomedicines}, number = {10(7)}, doi = {https://doi.org/10.3390/biomedicines10071630}, pages = {1630}, abstract = {Extracorporeal shockwave therapy (ESWT) can stimulate processes to promote regeneration, including cell proliferation and modulation of inflammation. Specific miRNA expression panels have been established to define correlations with regulatory targets within these pathways. This study aims to investigate the influence of low-energy ESWT-applied within the subacute and chronic phase of SCI (spinal cord injury) on recovery in a rat spinal cord contusion model. Outcomes were evaluated by gait analysis, µCT and histological analysis of spinal cords. A panel of serum-derived miRNAs after SCI and after ESWT was investigated to identify injury-, regeneration- and treatment-associated expression patterns. Rats receiving ESWT showed significant improvement in motor function in both a subacute and a chronic experimental setting. This effect was not reflected in changes in morphology, µCT-parameters or histological markers after ESWT. Expression analysis of various miRNAs, however, revealed changes after SCI and ESWT, with increased miR-375, indicating a neuroprotective effect, and decreased miR-382-5p potentially improving neuroplasticity via its regulatory involvement with BDNF. We were able to demonstrate a functional improvement of ESWT-treated animals after SCI in a subacute and chronic setting. Furthermore, the identification of miR-375 and miR-382-5p could potentially provide new targets for therapeutic intervention in future studies.}, subject = {Tissue Engineering}, language = {en} }