@article{SchandaKeiblHeimeletal., author = {Schanda, Jakob and Keibl, Claudia and Heimel, Patrick and Monforte, Xavier and Feichtinger, Xaver and Teuschl, Andreas and Baierl, Andreas and Muschitz, Christian and Redl, Heinz and Fialka, Christian and Mittermayr, Rainer}, title = {Zoledronic Acid Substantially Improves Bone Microarchitecture and Biomechanical Properties After Rotator Cuff Repair in a Rodent Chronic Defect Model}, series = {Am J Sports Med}, volume = {2020 Jul}, journal = {Am J Sports Med}, number = {48 (9)}, pages = {2151 -- 2160}, abstract = {Background: Bone mineral density at the humeral head is reduced in patients with chronic rotator cuff tears. Bone loss in the humeral head is associated with repair failure after rotator cuff reconstruction. Bisphosphonates (eg, zoledronic acid) increase bone mineral density. Hypothesis: Zoledronic acid improves bone mineral density of the humeral head and biomechanical properties of the enthesis after reconstruction of chronic rotator cuff tears in rats. Study design: Controlled laboratory study. Methods: A total of 32 male Sprague-Dawley rats underwent unilateral (left) supraspinatus tenotomy with delayed transosseous rotator cuff reconstruction after 3 weeks. All rats were sacrificed 8 weeks after rotator cuff repair. Animals were randomly assigned to 1 of 2 groups. At 1 day after rotator cuff reconstruction, the intervention group was treated with a single subcutaneous dose of zoledronic acid at 100 µg/kg bodyweight, and the control group received 1 mL of subcutaneous saline solution. In 12 animals of each group, micro-computed tomography scans of both shoulders were performed as well as biomechanical testing of the supraspinatus enthesis of both sides. In 4 animals of each group, histological analyses were conducted. Results: In the intervention group, bone volume fraction (bone volume/total volume [BV/TV]) of the operated side was higher at the lateral humeral head (P = .005) and the medial humeral head (P = .010) compared with the control group. Trabecular number on the operated side was higher at the lateral humeral head (P = .004) and the medial humeral head (P = .001) in the intervention group. Maximum load to failure rates on the operated side were higher in the intervention group (P < .001). Cortical thickness positively correlated with higher maximum load to failure rates in the intervention group (r = 0.69; P = .026). Histological assessment revealed increased bone formation in the intervention group. Conclusion: Single-dose therapy of zoledronic acid provided an improvement of bone microarchitecture at the humeral head as well as an increase of maximum load to failure rates after transosseous reconstruction of chronic rotator cuff lesions in rats. Clinical relevance: Zoledronic acid improves bone microarchitecture as well as biomechanical properties after reconstruction of chronic rotator cuff tears in rodents. These results need to be verified in clinical investigations.}, subject = {Tissue Engineering}, language = {en} } @article{BachmannSpitzSchaedletal., author = {Bachmann, Barbara and Spitz, Sarah and Sch{\"a}dl, Barbara and Teuschl, Andreas and Redl, Heinz and N{\"u}rnberger, Sylvia and Ertl, Peter}, title = {Stiffness Matters: Fine-Tuned Hydrogel Elasticity Alters Chondrogenic Redifferentiation}, series = {Froniers in Bioengineering and Biotechnology}, volume = {2020}, journal = {Froniers in Bioengineering and Biotechnology}, number = {8}, pages = {373}, abstract = {Biomechanical cues such as shear stress, stretching, compression, and matrix elasticity are vital in the establishment of next generation physiological in vitro tissue models. Matrix elasticity, for instance, is known to guide stem cell differentiation, influence healing processes and modulate extracellular matrix (ECM) deposition needed for tissue development and maintenance. To better understand the biomechanical effect of matrix elasticity on the formation of articular cartilage analogs in vitro, this study aims at assessing the redifferentiation capacity of primary human chondrocytes in three different hydrogel matrices of predefined matrix elasticities. The hydrogel elasticities were chosen to represent a broad spectrum of tissue stiffness ranging from very soft tissues with a Young's modulus of 1 kPa up to elasticities of 30 kPa, representative of the perichondral-space. In addition, the interplay of matrix elasticity and transforming growth factor beta-3 (TGF-β3) on the redifferentiation of primary human articular chondrocytes was studied by analyzing both qualitative (viability, morphology, histology) and quantitative (RT-qPCR, sGAG, DNA) parameters, crucial to the chondrotypic phenotype. Results show that fibrin hydrogels of 30 kPa Young's modulus best guide chondrocyte redifferentiation resulting in a native-like morphology as well as induces the synthesis of physiologic ECM constituents such as glycosaminoglycans (sGAG) and collagen type II. This comprehensive study sheds light onto the mechanobiological impact of matrix elasticity on formation and maintenance of articular cartilage and thus represents a major step toward meeting the need for advanced in vitro tissue models to study both re- and degeneration of articular cartilage.}, subject = {Tissue Engineering}, language = {en} } @article{ZiadlouRotmanTeuschletal., author = {Ziadlou, Reihane and Rotman, Stijn and Teuschl, Andreas and Salzer, Elias and Barbero, Andrea and Martin, Ivan and Alini, Mauro and Eglin, David and Grad, Sibylle}, title = {Optimization of hyaluronic acid-tyramine/silk-fibroin composite hydrogels for cartilage tissue engineering and delivery of anti-inflammatory and anabolic drugs}, series = {Materials Science and Engineering: C}, volume = {120}, journal = {Materials Science and Engineering: C}, number = {111701}, abstract = {Injury of articular cartilage leads to an imbalance in tissue homeostasis, and due to the poor self-healing capacity of cartilage the affected tissue often exhibits osteoarthritic changes. In recent years, injectable and highly tunable composite hydrogels for cartilage tissue engineering and drug delivery have been introduced as a desirable alternative to invasive treatments. In this study, we aimed to formulate injectable hydrogels for drug delivery and cartilage tissue engineering by combining different concentrations of hyaluronic acid-tyramine (HA-Tyr) with regenerated silk-fibroin (SF) solutions. Upon enzymatic crosslinking, the gelation and mechanical properties were characterized over time. To evaluate the effect of the hydrogel compositions and properties on extracellular matrix (ECM) deposition, bovine chondrocytes were embedded in enzymatically crosslinked HA-Tyr/SF composites (in further work abbreviated as HA/SF) or HA-Tyr hydrogels. We demonstrated that all hydrogel formulations were cytocompatible and could promote the expression of cartilage matrix proteins allowing chondrocytes to produce ECM, while the most prominent chondrogenic effects were observed in hydrogels with HA20/SF80 polymeric ratios. Unconfined mechanical testing showed that the compressive modulus for HA20/SF80 chondrocyte-laden constructs was increased almost 10-fold over 28 days of culture in chondrogenic medium which confirmed the superior production of ECM in this hydrogel compared to other hydrogels in this study. Furthermore, in hydrogels loaded with anabolic and anti-inflammatory drugs, HA20/SF80 hydrogel showed the longest and the most sustained release profile over time which is desirable for the long treatment duration typically necessary for osteoarthritic joints. In conclusion, HA20/SF80 hydrogel was successfully established as a suitable injectable biomaterial for cartilage tissue engineering and drug delivery applications.}, subject = {Tissue Engineering}, language = {en} } @article{SchneiderRohringerKapelleretal., author = {Schneider, Karl and Rohringer, Sabrina and Kapeller, Barbara and Grasl, Christian and Kiss, Herbert and Heber, Stefan and Walter, Ingrid and Teuschl, Andreas and Podesser, Bruno K. and Bergmeister, Helga}, title = {Riboflavin-mediated photooxidation to improve the characteristics of decellularized human arterial small diameter vascular grafts}, series = {Acta Biomater.}, volume = {2020}, journal = {Acta Biomater.}, number = {116}, pages = {246 -- 258}, abstract = {Vascular grafts with a diameter of less than 6 mm are made from a variety of materials and techniques to provide alternatives to autologous vascular grafts. Decellularized materials have been proposed as a possible approach to create extracellular matrix (ECM) vascular prostheses as they are naturally derived and inherently support various cell functions. However, these desirable graft characteristics may be limited by alterations of the ECM during the decellularization process leading to decreased biomechanical properties and hemocompatibility. In this study, arteries from the human placenta chorion were decellularized using two distinct detergents (Triton X-100 or SDS), which differently affect ECM ultrastructure. To overcome biomechanical strength loss and collagen fiber exposure after decellularization, riboflavin-mediated UV (RUV) crosslinking was used to uniformly crosslink the collagenous ECM of the grafts. Graft characteristics and biocompatibility with and without RUV crosslinking were studied in vitro and in vivo. RUV-crosslinked ECM grafts showed significantly improved mechanical strength and smoothening of the luminal graft surfaces. Cell seeding using human endothelial cells revealed no cytotoxic effects of the RUV treatment. Short-term aortic implants in rats showed cell migration and differentiation of host cells. Functional graft remodeling was evident in all grafts. Thus, RUV crosslinking is a preferable tool to improve graft characteristics of decellularized matrix conduits.}, subject = {Tissue Engineering}, language = {en} } @article{SchneiderRohringerKapelleretal., author = {Schneider, Karl H. and Rohringer, Sabrina and Kapeller, Barbara and Grasl, Christian and Kiss, Herbert and Heber, Stefan and Walter, Ingrid and Teuschl, Andreas H. and Podesser, Bruno K. and Bergmeister, Helga}, title = {Riboflavin-mediated photooxidation to improve the characteristics of decellularized human arterial small diameter vascular grafts}, series = {Acta Biomaterialia}, volume = {116}, journal = {Acta Biomaterialia}, pages = {246 -- 258}, abstract = {Vascular grafts with a diameter of less than 6 mm are made from a variety of materials and techniques to provide alternatives to autologous vascular grafts. Decellularized materials have been proposed as a possible approach to create extracellular matrix (ECM) vascular prostheses as they are naturally derived and inherently support various cell functions. However, these desirable graft characteristics may be limited by alterations of the ECM during the decellularization process leading to decreased biomechanical properties and hemocompatibility. In this study, arteries from the human placenta chorion were decellularized using two distinct detergents (Triton X-100 or SDS), which differently affect ECM ultrastructure. To overcome biomechanical strength loss and collagen fiber exposure after decellularization, riboflavin-mediated UV (RUV) crosslinking was used to uniformly crosslink the collagenous ECM of the grafts. Graft characteristics and biocompatibility with and without RUV crosslinking were studied in vitro and in vivo. RUV-crosslinked ECM grafts showed significantly improved mechanical strength and smoothening of the luminal graft surfaces. Cell seeding using human endothelial cells revealed no cytotoxic effects of the RUV treatment. Short-term aortic implants in rats showed cell migration and differentiation of host cells. Functional graft remodeling was evident in all grafts. Thus, RUV crosslinking is a preferable tool to improve graft characteristics of decellularized matrix conduits.}, subject = {Tissue Engineering}, language = {en} }