@article{DeiningerWagnerHeimeletal., author = {Deininger, Christian and Wagner, Andrea and Heimel, Patrick and Salzer, Elias and Monforte Vila, Xavier and Weißenbacher, Nadja and Grillari, Johannes and Redl, Heinz and Wichlas, Florian and Freude, Thomas and Tempfer, Herbert and Teuschl-Woller, Andreas and Traweger, Andreas}, title = {Enhanced BMP-2-Mediated Bone Repair Using an Anisotropic Silk Fibroin Scaffold Coated with Bone-like Apatite}, series = {Int. J. Mol. Sci.}, volume = {23}, journal = {Int. J. Mol. Sci.}, number = {1 / 283}, abstract = {The repair of large bone defects remains challenging and often requires graft material due to limited availability of autologous bone. In clinical settings, collagen sponges loaded with excessive amounts of bone morphogenetic protein 2 (rhBMP-2) are occasionally used for the treatment of bone non-unions, increasing the risk of adverse events. Therefore, strategies to reduce rhBMP-2 dosage are desirable. Silk scaffolds show great promise due to their favorable biocompatibility and their utility for various biofabrication methods. For this study, we generated silk scaffolds with axially aligned pores, which were subsequently treated with 10× simulated body fluid (SBF) to generate an apatitic calcium phosphate coating. Using a rat femoral critical sized defect model (CSD) we evaluated if the resulting scaffold allows the reduction of BMP-2 dosage to promote efficient bone repair by providing appropriate guidance cues. Highly porous, anisotropic silk scaffolds were produced, demonstrating good cytocompatibility in vitro and treatment with 10× SBF resulted in efficient surface coating. In vivo, the coated silk scaffolds loaded with a low dose of rhBMP-2 demonstrated significantly improved bone regeneration when compared to the unmineralized scaffold. Overall, our findings show that this simple and cost-efficient technique yields scaffolds that enhance rhBMP-2 mediated bone healing.}, subject = {Tissue Engineering}, language = {en} } @inproceedings{WagnerJankBalzetal., author = {Wagner, Fabian and Jank, Miran and Balz, Andrea and Forjan, Mathias and Urbauer, Philipp}, title = {Immersive Spatial Planning in Healthcare: Developing a Pipeline to Automatically Convert Computer Aided DesignData to Virtual Reality}, series = {dHealth 2023, 17th Annual Conference on Health Informatics meets Digital Health}, volume = {301}, booktitle = {dHealth 2023, 17th Annual Conference on Health Informatics meets Digital Health}, doi = {https://doi.org/10.3233/shti230019}, pages = {96 -- 101}, abstract = {Equipping rooms used for medical purposes, like e.g., intensive care units, is an expensive and time-consuming task. In order to avoid extensive subsequent adjustments due to inappropriate layout visualization or geometric conditions difficult to identify in 2D plans, it is of utmost importance to provide an optimal planning environment to future users such as physicians and nurses. In this paper we present the concept of a fully automatized pipeline, which is designed to visualize computer aided design (CAD) data using virtual reality (VR). The immersive VR experience results in improvement of efficiency in the decision- making process during the planning phase due to better spatial imagination. The pipeline was successfully tested with CAD data from existing Intensive Care Units. The results indicate that the pipeline can be a valuable tool in the field of spatial planning in healthcare, due to simple usage and fast conversion of CAD data. The next step will be the development of a plugin for CAD tools to allow for interactions with the CAD models in Virtual Reality, which is not yet possible without manual intervention}, subject = {Virtual Reality}, language = {en} } @inproceedings{JankWagnerUrbaueretal., author = {Jank, Miran and Wagner, Fabian and Urbauer, Philipp and Balz, Andrea and Forjan, Mathias}, title = {Extended Reality Solutions in Medical Context and Educational Approaches}, series = {Healthcare Transformation with Informatics and Artificial Intelligence / 21th International Conference on Informatics, Management and Technology in Healthcare}, booktitle = {Healthcare Transformation with Informatics and Artificial Intelligence / 21th International Conference on Informatics, Management and Technology in Healthcare}, publisher = {iOS Press}, doi = {10.3233/SHTI230548}, pages = {521 -- 524}, abstract = {The healthcare sector is growing in importance as people continue to age and pandemics complicate the boundary conditions of such systems. The number of innovative approaches to solve singular tasks and problems in this area is only slowly increasing. This is particularly evident when looking at medical technology planning, medical training and process simulation. In this paper a concept for versatile digital improvements to these problems by using state of the art development methods of Virtual Reality (VR) and Augmented Reality (AR) are presented. The programming and design of the software is done with the help of Unity Engine, which provides an open interface for docking with the developed framework for future work. The solutions were tested under domain specific environments and have shown good results and positive feedback.}, subject = {Virtual Reality}, language = {en} }