@article{HackethalDungelTeuschl, author = {Hackethal, Johannes and Dungel, Peter and Teuschl, Andreas Herbert}, title = {Frequently Used Strategies to Isolate Extracellular Matrix Proteins from Human Placenta and Adipose Tissue}, series = {Tissue Engineering Part C: Methods}, volume = {27}, journal = {Tissue Engineering Part C: Methods}, number = {12}, pages = {649 -- 660}, abstract = {The natural extracellular matrix (ECM) provides the optimal environment for cells. Many enzymatic or non-enzymatic based strategies to extract ECM proteins from tissues were published over the past years. However, every single isolation strategy reported so far is associated with specific bottlenecks. In this study, frequently used strategies to isolate ECM from human placenta or adipose tissue using Tris-, serum-, or pepsin-based buffers were compared. The resulting ECM proteins were biochemically characterized by analysis of cellular remnants using Hoechst DNA staining, glycosaminoglycan (GAG) content by dimethylmethylene blue, visualization of protein bands using sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis combined with amino acid quantification, and assessment of the proangiogenic profile using an angiogenesis array. Tris-NaCl-extracted ECM proteins showed a high heterogenic degree of extracted proteins, bioactive growth factors, and GAGs, but no collagen-I. Active serum-extracted ECM showed significant lower DNA remnants when compared with the Tris-NaCl isolation strategy. Pepsin-extracted ECM was rich in collagen-I and low amounts of remaining bioactive growth factors. This strategy was most effective to reduce DNA amounts when compared with the other isolation strategies. Pepsin-extracted ECM from both tissues easily gelled at 37°C, whereas the other extracted ECM strategies did not gel at 37°C (Tris-NaCl: liquid; serum: sponge). All relevant characteristics (DNA residues, ECM diversity and bioactivity, shape) of the extracted ECM proteins highly depend on its isolation strategy and could still be optimized. Impact statement The natural human extracellular matrix (ECM) is the ideal cell niche. Various strategies were reported to isolate human ECM components from various sources. In this article, we compared frequently used methods and compared their characteristics (DNA remnants, glycosaminoglycan content, sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, amino acid quantification, angiogenesis array, and gel formation). We conclude that more research is still necessary to optimize current isolation approaches for in vitro or in vivo applications of human ECM.}, subject = {Tissue Engineering}, language = {en} } @inproceedings{BasoliChaudryCrucianietal., author = {Basoli, Valentina and Chaudry, Sidrah and Cruciani, Sara and Fuchs, Christiane and Rieger, Sabine and Dungel, Peter and Wolbank, Susanne and Ventura, Carlo and Grillari-Voglauer, Regina and Redl, Heinz and Maioli, Margherita}, title = {Epigenetic and molecular behavious of stem cells exposed to biophysical stimuli: new insights in regenerative medicine}, series = {Proceedings des Seminars zum 40. Jahresjubil{\"a}um der {\"O}sterreichischen Gesellschaft f{\"u}r Chirurgische Forschung}, booktitle = {Proceedings des Seminars zum 40. Jahresjubil{\"a}um der {\"O}sterreichischen Gesellschaft f{\"u}r Chirurgische Forschung}, subject = {Stem Cells}, language = {en} } @misc{BasoliChaudryCrucianietal., author = {Basoli, Valentina and Chaudry, Sidrah and Cruciani, Gabriele and Fuchs, Christiane and Rieger, Sabine and Dungel, Peter and Wolbank, Susanne and Ventura, Carlo and Grillari-Voglauer, Regina and Redl, Heinz and Maioli, Margherita}, title = {Epigenetic and molecular behavious of stem cells exposed to biophysical stimuli: new insights in regenerative medicine}, subject = {Stem Cells}, language = {en} } @article{TeuschlBalmayorRedletal., author = {Teuschl, Andreas and Balmayor, Elizabeth and Redl, Heinz and van Griensven, Martijn and Dungel, Peter}, title = {Phototherapy With LED Light Modulates Healing Processes in an In Vitro Scratch Wound-Model Using 3 Different Cell Types}, series = {Dermatologic Surgery}, volume = {41}, journal = {Dermatologic Surgery}, number = {2}, pages = {261 -- 268}, subject = {Phototherapy}, language = {en} } @article{DungelTeuschlBanerjeeetal., author = {Dungel, Peter and Teuschl, Andreas and Banerjee, Asmita and Paier-Pourani, Jamile and Redl, Heinz and Kozlov, Andrey}, title = {Impact of mitochondria on nitrite metabolism in HL-1 cardiomyocytes}, series = {Frontiers in Physiology}, journal = {Frontiers in Physiology}, number = {4}, subject = {Nitrite}, language = {en} } @article{JohannesWeihsKarneretal., author = {Johannes, Hackethal and Weihs, Anna and Karner, Lisa and Metzger, Magdalena and Dungel, Peter and Hennerbichler, Simone and Redl, Heinz and Teuschl-Woller, Andreas Herbert}, title = {Novel Human Placenta-Based Extract for Vascularization Strategies in Tissue Engineering}, series = {Tissue Eng Part C Methods}, volume = {27}, journal = {Tissue Eng Part C Methods}, number = {11}, pages = {616 -- 632}, abstract = {There is critical unmet need for new vascularized tissues to support or replace injured tissues and organs. Various synthetic and natural materials were already established for use of two-dimensional (2D) and three-dimensional (3D) in vitro neovascularization assays, however, they still cannot mimic the complex functions of the sum of the extracellular matrix (ECM) in native intact tissue. Currently, this issue is only addressed by artificial products such as Matrigel™, which comprises a complex mixture of ECM proteins, extracted from animal tumor tissue. Despite its outstanding bioactivity, the isolation from tumor tissue hinders its translation into clinical applications. Since nonhuman ECM proteins may cause immune reactions, as are frequently observed in clinical trials, human ECM proteins represent the best option when aiming for clinical applications. Here, we describe an effective method of isolating a human placenta substrate (hpS) that induces the spontaneous formation of an interconnected network of green fluorescence-labeled human umbilical vein endothelial cells (gfpHUVECs) in vitro. The substrate was biochemically characterized by using a combination of bicinchoninic acid (BCA) assay, DNA, and glycosaminoglycan (GAG) content assays, sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) analysis and Western blot, angiogenesis arrays, chromatographic thrombin detection, high performance liquid chromatography (HPLC)-based amino acid quantification analysis, and assessment of antimicrobial properties. 2D in vitro cell culture experiments have been performed to determine the vasculogenic potential of hpS, which demonstrated that cell networks developed on hpS show a significantly higher degree of complexity (number of tubules/junctions; total/mean tube length) when compared with Matrigel. As 3D cell culture techniques represent a more accurate representation of the in vivo condition, the substrate was 3D solidified using various natural polymers. 3D in vitro vasculogenesis assays have been performed by seeding gfpHUVECs in an hpS-fibrinogen clot. In conclusion, hpS provides a potent human/material-based alternative to xenogenic-material-based biomaterials for vascularization strategies in tissue engineering.}, subject = {Tissue Engineering}, language = {en} }