@inproceedings{PucherMenseWahletal., author = {Pucher, Robert and Mense, Alexander and Wahl, Harald and Nimmervoll, Alexander and Hofmann, Alexander and Hammerl, Barbara and Schm{\"o}llebeck, Fritz}, title = {Intrinsic Motivation of Students in PBL Courses}, series = {Proceedings of the International Conference PBL2004 Pleasure by Learning, Cancun (Mexico)}, booktitle = {Proceedings of the International Conference PBL2004 Pleasure by Learning, Cancun (Mexico)}, subject = {Problem Based Learning}, language = {en} } @misc{Pasteka, author = {Pasteka, Richard}, title = {Applications of Biomedical Engineering in Respiratory Care}, subject = {Biomedical Engineering}, language = {en} } @inproceedings{PastekaForjan, author = {Pasteka, Richard and Forjan, Mathias}, title = {Changes of particle deposition caused by different breathing patterns during active lung simulation}, series = {41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019}, booktitle = {41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019}, organization = {IEEE}, pages = {4969 -- 4972}, subject = {Lung Simulation}, language = {en} } @misc{EckeltHerczegSabo, author = {Eckelt, Markus and Herczeg, C. and Sabo, Anton}, title = {Gesundheitsf{\"o}rdernde Maßnahmen am Arbeitsplatz durch Nordic Walking}, subject = {Sport}, language = {de} } @inproceedings{HoerzerFuchsGastingeretal., author = {H{\"o}rzer, S. and Fuchs, Christiane and Gastinger, R. and Sabo, Anton and Mehnen, Lars and Martinek, Johannes and Reichel, Martin}, title = {Simulation of spinning soccer ball trajectories influenced by altitude}, series = {Procedia Engineering}, booktitle = {Procedia Engineering}, pages = {2461 -- 2466}, subject = {Soccer}, language = {en} } @inproceedings{PfuetznerKaniusasKoseletal., author = {Pf{\"u}tzner, Helmut and Kaniusas, Eugenijus and Kosel, J{\"u}rgen and Mehnen, Lars and Meydan, Turgut and Borza, Firuta and Vazquez, Manuel and Rohn, Michael and Marquardt, Bernd}, title = {First Magnetic Materials with Sensitivity for the Physical Quantity of 'Curvature'}, series = {4th Japanese Mediterranean Workshop on Applied Electromagnetic Engineering for Magnetic, Superconducting and Nano Materials}, booktitle = {4th Japanese Mediterranean Workshop on Applied Electromagnetic Engineering for Magnetic, Superconducting and Nano Materials}, pages = {177 -- 178}, subject = {Magnetic}, language = {en} } @article{HendersonSlingersPedrottietal., author = {Henderson, Ben and Slingers, Gitte and Pedrotti, Michele and Pugliese, Giovanni and Malaskova, Michaela and Bryant, Luke and Lomonaco, Tommaso and Ghimenti, Silvia and Moreno, Sergi and Cordell, Rebecca and Harren, Frans J M and Schubert, Jochen and Mayhew, Chris A and Wilde, Michael and Di Francesco, Fabio and Koppen, Gudrun and Beauchamp, Jonathan D and Cristescu, Simona M}, title = {The peppermint breath test benchmark for PTR-MS and SIFT-MS}, series = {Journal of Breath Research}, journal = {Journal of Breath Research}, number = {15}, doi = {https://doi.org/10.1088/1752-7163/ac1fcf}, pages = {Artikelnr. 046005}, abstract = {A major challenge for breath research is the lack of standardization in sampling and analysis. To address this, a test that utilizes a standardized intervention and a defined study protocol has been proposed to explore disparities in breath research across different analytical platforms and to provide benchmark values for comparison. Specifically, the Peppermint Experiment involves the targeted analysis in exhaled breath of volatile constituents of peppermint oil after ingestion of the encapsulated oil. Data from the Peppermint Experiment performed by proton transfer reaction mass spectrometry (PTR-MS) and selected ion flow tube mass spectrometry (SIFT-MS) are presented and discussed herein, including the product ions associated with the key peppermint volatiles, namely limonene, α- and β-pinene, 1,8-cineole, menthol, menthone and menthofuran. The breath washout profiles of these compounds from 65 individuals were collected, comprising datasets from five PTR-MS and two SIFT-MS instruments. The washout profiles of these volatiles were evaluated by comparing the log-fold change over time of the product ion intensities associated with each volatile. Benchmark values were calculated from the lower 95\% confidence interval of the linear time-to-washout regression analysis for all datasets combined. Benchmark washout values from PTR-MS analysis were 353 min for the sum of monoterpenes and 1,8-cineole (identical product ions), 173 min for menthol, 330 min for menthofuran, and 218 min for menthone; from SIFT-MS analysis values were 228 min for the sum of monoterpenes, 281 min for the sum of monoterpenes and 1,8-cineole, and 370 min for menthone plus 1,8-cineole. Large inter- and intra-dataset variations were observed, whereby the latter suggests that biological variability plays a key role in how the compounds are absorbed, metabolized and excreted from the body via breath. This variability seems large compared to the influence of sampling and analytical procedures, but further investigations are recommended to clarify the effects of these factors.}, subject = {standardization}, language = {en} } @misc{NemecFrohner, author = {Nemec, Iris and Frohner, Matthias}, title = {How can life science students, especially biomedical engineering students, benefit from the extra-curricular offerings and systems already established in other scientific fields?}, series = {Abstracts of the 2022 Joint Annual Conference of the Austrian ({\"O}GBMT), German (VDE DGBMT) and Swiss (SSBE) Societies for Biomedical Engineering, including the 14th Vienna International Workshop on Functional Electrical Stimulation}, journal = {Abstracts of the 2022 Joint Annual Conference of the Austrian ({\"O}GBMT), German (VDE DGBMT) and Swiss (SSBE) Societies for Biomedical Engineering, including the 14th Vienna International Workshop on Functional Electrical Stimulation}, doi = {https://doi.org/10.1515/bmt-2022-2001}, pages = {348}, subject = {extra-curricular offerings}, language = {en} } @misc{NemecMalaskovaPereiraetal., author = {Nemec, Iris and Malaskova, Michaela and Pereira, Luis and Pavao, Joao and Frohner, Matthias}, title = {Experiences of intercultural teaching activities in the field of eHealth}, series = {Abstracts of the 2022 Joint Annual Conference of the Austrian ({\"O}GBMT), German (VDE DGBMT) and Swiss (SSBE) Societies for Biomedical Engineering, including the 14th Vienna International Workshop on Functional Electrical Stimulation}, journal = {Abstracts of the 2022 Joint Annual Conference of the Austrian ({\"O}GBMT), German (VDE DGBMT) and Swiss (SSBE) Societies for Biomedical Engineering, including the 14th Vienna International Workshop on Functional Electrical Stimulation}, doi = {https://doi.org/10.1515/bmt-2022-2001}, pages = {351}, subject = {intercultural teaching}, language = {en} } @misc{TraxlerBalz, author = {Traxler, Lukas and Balz, Andrea}, title = {Current Advances in the Optical Characterization of Intraocular Lenses}, series = {Abstracts of the 2022 Joint Annual Conference of the Austrian ({\"O}GBMT), German (VDE DGBMT) and Swiss (SSBE) Societies for Biomedical Engineering, including the 14th Vienna International Workshop on Functional Electrical Stimulation}, journal = {Abstracts of the 2022 Joint Annual Conference of the Austrian ({\"O}GBMT), German (VDE DGBMT) and Swiss (SSBE) Societies for Biomedical Engineering, including the 14th Vienna International Workshop on Functional Electrical Stimulation}, doi = {https://doi.org/10.1515/bmt-2022-2001}, pages = {102}, subject = {Intraocular Lenses}, language = {en} } @article{HanetsederLevstekTeuschlWolleretal., author = {Hanetseder, Dominik and Levstek, Tina and Teuschl-Woller, Andreas and Frank, Julia Katharina and Schaedl, Barbara and Redl, Heinz and Marolt Presen, Darja}, title = {Engineering of extracellular matrix from human iPSC-mesenchymal progenitors to enhance osteogenic capacity of human bone marrow stromal cells independent of their age}, series = {Front Bioeng Biotechnol}, volume = {11}, journal = {Front Bioeng Biotechnol}, doi = {https://doi.org/10.3389/fbioe.2023.1214019}, abstract = {Regeneration of bone defects is often limited due to compromised bone tissue physiology. Previous studies suggest that engineered extracellular matrices enhance the regenerative capacity of mesenchymal stromal cells. In this study, we used human-induced pluripotent stem cells, a scalable source of young mesenchymal progenitors (hiPSC-MPs), to generate extracellular matrix (iECM) and test its effects on the osteogenic capacity of human bone-marrow mesenchymal stromal cells (BMSCs). iECM was deposited as a layer on cell culture dishes and into three-dimensional (3D) silk-based spongy scaffolds. After decellularization, iECM maintained inherent structural proteins including collagens, fibronectin and laminin, and contained minimal residual DNA. Young adult and aged BMSCs cultured on the iECM layer in osteogenic medium exhibited a significant increase in proliferation, osteogenic marker expression, and mineralization as compared to tissue culture plastic. With BMSCs from aged donors, matrix mineralization was only detected when cultured on iECM, but not on tissue culture plastic. When cultured in 3D iECM/silk scaffolds, BMSCs exhibited significantly increased osteogenic gene expression levels and bone matrix deposition. iECM layer showed a similar enhancement of aged BMSC proliferation, osteogenic gene expression, and mineralization compared with extracellular matrix layers derived from young adult or aged BMSCs. However, iECM increased osteogenic differentiation and decreased adipocyte formation compared with single protein substrates including collagen and fibronectin. Together, our data suggest that the microenvironment comprised of iECM can enhance the osteogenic activity of BMSCs, providing a bioactive and scalable biomaterial strategy for enhancing bone regeneration in patients with delayed or failed bone healing.}, subject = {aging}, language = {en} } @article{BernhardMaroltPresenLietal., author = {Bernhard, Jonathan C and Marolt Presen, Darja and Li, Ming and Monforte, Xavier and Ferguson, James and Leinfellner, Gabriele and Heimel, Patrick and Betti, Susanne L and Shu, Sharon and Teuschl-Woller, Andreas H and Tangl, Stefan and Redl, Heinz and Vunjak-Novakovic, Gordana}, title = {Effects of Endochondral and Intramembranous Ossification Pathways on Bone Tissue Formation and Vascularization in Human Tissue-Engineered Grafts}, series = {Cells}, volume = {11}, journal = {Cells}, number = {19:3070}, doi = {10.3390/cells11193070}, abstract = {Bone grafts can be engineered by differentiating human mesenchymal stromal cells (MSCs) via the endochondral and intramembranous ossification pathways. We evaluated the effects of each pathway on the properties of engineered bone grafts and their capacity to drive bone regeneration. Bone-marrow-derived MSCs were differentiated on silk scaffolds into either hypertrophic chondrocytes (hyper) or osteoblasts (osteo) over 5 weeks of in vitro cultivation, and were implanted subcutaneously for 12 weeks. The pathways' constructs were evaluated over time with respect to gene expression, composition, histomorphology, microstructure, vascularization and biomechanics. Hypertrophic chondrocytes expressed higher levels of osteogenic genes and deposited significantly more bone mineral and proteins than the osteoblasts. Before implantation, the mineral in the hyper group was less mature than that in the osteo group. Following 12 weeks of implantation, the hyper group had increased mineral density but a similar overall mineral composition compared with the osteo group. The hyper group also displayed significantly more blood vessel infiltration than the osteo group. Both groups contained M2 macrophages, indicating bone regeneration. These data suggest that, similar to the body's repair processes, endochondral pathway might be more advantageous when regenerating large defects, whereas intramembranous ossification could be utilized to guide the tissue formation pattern with a scaffold architecture.}, subject = {bone tissue engineering}, language = {en} } @article{GollmannTepekoeylueGraberHirschetal., author = {Gollmann-Tepek{\"o}yl{\"u}, Can and Graber, Michael and Hirsch, Jakob and Mair, Sophia and Naschberger, Andreas and P{\"o}lzl, Leo and N{\"a}gele, Felix and Kirchmair, Elke and Degenhart, Gerald and Demetz, Egon and Hilbe, Richard and Chen, Hao-Yu and Engert, James C and B{\"o}hm, Anna and Franz, Nadja and Lobenwein, Daniela and Lener, Daniela and Fuchs, Christiane and Weihs, Anna and T{\"o}chterle, Sonja and Vogel, Georg F and Schweiger, Victor and Eder, Jonas and Pietschmann, Peter and Seifert, Markus and Kronenberg, Florian and Coassin, Stefan and Blumer, Michael and Hackl, Hubert and Meyer, Dirk and Feuchtner, Gudrun and Kirchmair, Rudolf and Troppmair, Jakob and Krane, Markus and Weiss, G{\"u}nther and Tsimikas, Sotirios and Thanassoulis, George and Grimm, Michael and Rupp, Bernhard and Huber, Lukas A and Zhang, Shen-Ying and Casanova, Jean-Laurent and Tancevski, Ivan and Holfeld, Johannes}, title = {Toll-Like Receptor 3 Mediates Aortic Stenosis Through a Conserved Mechanism of Calcification}, series = {Circulation}, volume = {147}, journal = {Circulation}, number = {20}, doi = {10.1161/CIRCULATIONAHA.122.063481}, pages = {1518 -- 1533}, subject = {Toll-like receptor 3}, language = {en} } @misc{BalzLangerFrohneretal., author = {Balz, Andrea and Langer, Sarah and Frohner, Matthias and Forjan, Mathias}, title = {Development of Internationalized Teaching and Training Modules for Healthcare Professionals}, series = {Abstracts of the 2022 Joint Annual Conference of the Austrian ({\"O}GBMT), German (VDE DGBMT) and Swiss (SSBE) Societies for Biomedical Engineering, including the 14th Vienna International Workshop on Functional Electrical Stimulation}, journal = {Abstracts of the 2022 Joint Annual Conference of the Austrian ({\"O}GBMT), German (VDE DGBMT) and Swiss (SSBE) Societies for Biomedical Engineering, including the 14th Vienna International Workshop on Functional Electrical Stimulation}, doi = {https://doi.org/10.1515/bmt-2022-2001}, pages = {353}, subject = {Internationalized Teaching}, language = {en} } @article{XuGeppLenggeretal., author = {Xu, Yingyang and Gepp, Barbara and Lengger, Nina and Yin, Jia and Breiteneder, Heimo}, title = {Identification of probable pectinesterase as a major allergen of pollen of the Asian white birch (Betula platyphylla) in northern China}, series = {Asian Pac J Allergy Immunol}, journal = {Asian Pac J Allergy Immunol}, doi = {10.12932/AP-100722-1409}, subject = {birch pollen allergy}, language = {en} } @misc{EidiBalzForjan, author = {Eidi, Nada and Balz, Andrea and Forjan, Mathias}, title = {MedTech-mR - Creating a Virtual Enviroment for Medical Training and Room Planning}, series = {Abstracts of the 2022 Joint Annual Conference of the Austrian ({\"O}GBMT), German (VDE DGBMT) and Swiss (SSBE) Societies for Biomedical Engineering, including the 14th Vienna International Workshop on Functional Electrical Stimulation}, journal = {Abstracts of the 2022 Joint Annual Conference of the Austrian ({\"O}GBMT), German (VDE DGBMT) and Swiss (SSBE) Societies for Biomedical Engineering, including the 14th Vienna International Workshop on Functional Electrical Stimulation}, doi = {https://doi.org/10.1515/bmt-2022-2001}, pages = {349}, subject = {Medical Training}, language = {en} } @misc{MalaskovaForjan, author = {Malaskova, Michaela and Forjan, Mathias}, title = {Current topics in Life Science Engineering lectures}, series = {Abstracts of the 2022 Joint Annual Conference of the Austrian ({\"O}GBMT), German (VDE DGBMT) and Swiss (SSBE) Societies for Biomedical Engineering, including the 14th Vienna International Workshop on Functional Electrical Stimulation}, journal = {Abstracts of the 2022 Joint Annual Conference of the Austrian ({\"O}GBMT), German (VDE DGBMT) and Swiss (SSBE) Societies for Biomedical Engineering, including the 14th Vienna International Workshop on Functional Electrical Stimulation}, doi = {https://doi.org/10.1515/bmt-2022-2001}, pages = {350}, subject = {Life Science Engineering}, language = {en} } @article{RomanelliBielerHeimeletal., author = {Romanelli, Pasquale and Bieler, Lara and Heimel, Patrick and Škokić, Siniša and Jakubecova, Dominika and Kreutzer, Christina and Zaunmair, Pia and Smolčić, Tomislav and Benedetti, Bruno and Rohde, Eva and Gimona, Mario and Hercher, David and Dobrivojević Radmilović, Marina and Couillard-Despres, Sebastien}, title = {Enhancing Functional Recovery Through Intralesional Application of Extracellular Vesicles in a Rat Model of Traumatic Spinal Cord Injury}, series = {Front Cell Neurosci}, volume = {15}, journal = {Front Cell Neurosci}, doi = {10.3389/fncel.2021.795008}, abstract = {Local inflammation plays a pivotal role in the process of secondary damage after spinal cord injury. We recently reported that acute intravenous application of extracellular vesicles (EVs) secreted by human umbilical cord mesenchymal stromal cells dampens the induction of inflammatory processes following traumatic spinal cord injury. However, systemic application of EVs is associated with delayed delivery to the site of injury and the necessity for high doses to reach therapeutic levels locally. To resolve these two constraints, we injected EVs directly at the lesion site acutely after spinal cord injury. We report here that intralesional application of EVs resulted in a more robust improvement of motor recovery, assessed with the BBB score and sub-score, as compared to the intravenous delivery. Moreover, the intralesional application was more potent in reducing inflammation and scarring after spinal cord injury than intravenous administration. Hence, the development of EV-based therapy for spinal cord injury should aim at an early application of vesicles close to the lesion.}, subject = {exosomes}, language = {en} } @article{FeichtingerHeimelTangletal., author = {Feichtinger, Xaver and Heimel, Patrick and Tangl, Stefan and Keibl, Claudia and N{\"u}rnberger, Sylvia and Schanda, Jakob Emanuel and Hercher, David and Kocijan, Roland and Redl, Heinz and Grillari, Johannes and Fialka, Christian and Mittermayr, Rainer}, title = {Improved biomechanics in experimental chronic rotator cuff repair after shockwaves is not reflected by bone microarchitecture}, series = {PLoS One}, volume = {17}, journal = {PLoS One}, number = {1}, doi = {10.1371/journal.pone.0262294}, subject = {chronic rotator cuff repair}, language = {en} } @phdthesis{Tomasch, author = {Tomasch, Janine}, title = {Strategies to improve the myogenic outcome of skeletal muscle tissue engineering approaches through optimization of biomaterial properties and mechanical stimuli}, school = {Fachhochschule Technikum Wien}, subject = {muscle}, language = {en} }