@inproceedings{PastekaForjanDavid, author = {Pasteka, Richard and Forjan, Mathias and David, Veronika}, title = {A Single Point of Contact Data Platform for Rehabilitative Exercises and Equipment}, series = {DSAI 2018 - 8th International Conference on Software Development and Technologies for Enhancing Accessibility and Fighting Info-exclusion}, booktitle = {DSAI 2018 - 8th International Conference on Software Development and Technologies for Enhancing Accessibility and Fighting Info-exclusion}, subject = {Telemedicine}, language = {en} } @misc{SchererZapfSalomonetal., author = {Scherer, Matthias and Zapf, Stefan and Salomon, Cornelia and Kotzian, Stefan and Forjan, Mathias}, title = {Development of a virtual environment for the rehabilitation of neurological patients}, subject = {Virtual Supermarket}, language = {en} } @inproceedings{FrohnerGottschalkFranzletal., author = {Frohner, Matthias and Gottschalk, Marion and Franzl, Gerald and Pasteka, Richard and Uslar, Mathias and Sauermann, Stefan}, title = {Smart Grid Interoperability Profiles Development}, series = {IEEE International Conference on Smart Grid Communications}, booktitle = {IEEE International Conference on Smart Grid Communications}, subject = {Smart Grid}, language = {en} } @misc{TkachenkoBrilDavidForjanetal., author = {Tkachenko Bril, Andres Igor and David, Veronika and Forjan, Mathias and Gaudernak, Jakob and Pils, Katharina}, title = {Evaluation of the feasibility of a partial weight-bearing supporting biofeedback system based on instrumented insoles and an Android application}, subject = {Weight-Bearing}, language = {en} } @misc{DavidForjanPaštěkaetal., author = {David, Veronika and Forjan, Mathias and Paštěka, Richard and Scherer, Matthias and Hofst{\"a}tter, Otto}, title = {Development of a Multi-Purpose Easy-to-Use Set of Tools for Home Based Rehabilitation}, subject = {Rehabitation}, language = {en} } @misc{FrohnerForjan, author = {Frohner, Matthias and Forjan, Mathias}, title = {Interoperability Challenges - How to integrate medical devices}, subject = {Interoperability}, language = {en} } @misc{DavidForjan, author = {David, Veronika and Forjan, Mathias}, title = {Rehabilitation at Home - a Device supported Approach}, subject = {Rehabilitation}, language = {en} } @misc{MuehlederFuchsBassilioetal., author = {M{\"u}hleder, Severin and Fuchs, Christiane and Bassilio, Jose and Sczwarc, Dorota and Pill, Karoline and Slezak, Paul and Labuda, Krystina and Siehs, Christian and Pr{\"o}ll, Johannes and Priglinger, Eleni and Redl, Heinz and Holnthoner, Wolfgang}, title = {The purinergic receptor P2Y2 modulates endothelial sprouting and angiogenesis}, subject = {Angiogenesis}, language = {en} } @article{SchneiderEnayatiGrasletal., author = {Schneider, Karl Heinrich and Enayati, Marjan and Grasl, Christian and Walter, Ingrid and Budinsky, Lubos and Zebic, Gabriel and Kaun, Christoph and Wagner, Anja and Kratochwill, Klaus and Redl, Heinz and Teuschl, Andreas and Podesser, Bruno K. and Bergmeister, Helga}, title = {Acellular vascular matrix grafts from human placenta chorion: Impact of ECM preservation on graft characteristics, protein composition and in vivo performance.}, series = {Biomaterials}, journal = {Biomaterials}, pages = {14 -- 26}, abstract = {Small diameter vascular grafts from human placenta, decellularized with either Triton X-100 (Triton) or SDS and crosslinked with heparin were constructed and characterized. Graft biochemical properties, residual DNA, and protein composition were evaluated to compare the effect of the two detergents on graft matrix composition and structural alterations. Biocompatibility was tested in vitro by culturing the grafts with primary human macrophages and in vivo by subcutaneous implantation of graft conduits (n = 7 per group) into the flanks of nude rats. Subsequently, graft performance was evaluated using an aortic implantation model in Sprague Dawley rats (one month, n = 14). In situ graft imaging was performed using MRI angiography. Retrieved specimens were analyzed by electromyography, scanning electron microscopy, histology and immunohistochemistry to evaluate cell migration and the degree of functional tissue remodeling. Both decellularization methods resulted in grafts of excellent biocompatibility in vitro and in vivo, with low immunogenic potential. Proteomic data revealed removal of cytoplasmic proteins with relative enrichment of ECM proteins in decelluarized specimens of both groups. Noteworthy, LC-Mass Spectrometry analysis revealed that 16 proteins were exclusively preserved in Triton decellularized specimens in comparison to SDS-treated specimens. Aortic grafts showed high patency rates, no signs of thrombus formation, aneurysms or rupture. Conduits of both groups revealed tissue-specific cell migration indicative of functional remodeling. This study strongly suggests that decellularized allogenic grafts from the human placenta have the potential to be used as vascular replacement materials. Both detergents produced grafts with low residual immunogenicity and appropriate mechanical properties. Observed differences in graft characteristics due to preservation method had no impact on successful in vivo performance in the rodent model.}, subject = {Biomaterial}, language = {en} } @article{PriglingerSchuhSteffenhagenetal., author = {Priglinger, Eleni and Schuh, Christina and Steffenhagen, Carolin and Wurzer, Christoph and Maier, Julia and N{\"u}rnberger, Sylvia and Holnthoner, Wolfgang and Fuchs, Christiane and Suessner, Susanne and R{\"u}nzler, Dominik and Redl, Heinz and Wolbank, Susanne}, title = {Improvement of adipose tissue-derived cells by low-energy extracorporeal shock wave therapy.}, series = {Cytotherapy}, journal = {Cytotherapy}, pages = {1079 -- 1095}, abstract = {BACKGROUND: Cell-based therapies with autologous adipose tissue-derived cells have shown great potential in several clinical studies in the last decades. The majority of these studies have been using the stromal vascular fraction (SVF), a heterogeneous mixture of fibroblasts, lymphocytes, monocytes/macrophages, endothelial cells, endothelial progenitor cells, pericytes and adipose-derived stromal/stem cells (ASC) among others. Although possible clinical applications of autologous adipose tissue-derived cells are manifold, they are limited by insufficient uniformity in cell identity and regenerative potency. METHODS: In our experimental set-up, low-energy extracorporeal shock wave therapy (ESWT) was performed on freshly obtained human adipose tissue and isolated adipose tissue SVF cells aiming to equalize and enhance stem cell properties and functionality. RESULTS: After ESWT on adipose tissue we could achieve higher cellular adenosine triphosphate (ATP) levels compared with ESWT on the isolated SVF as well as the control. ESWT on adipose tissue resulted in a significantly higher expression of single mesenchymal and vascular marker compared with untreated control. Analysis of SVF protein secretome revealed a significant enhancement in insulin-like growth factor (IGF)-1 and placental growth factor (PLGF) after ESWT on adipose tissue. DISCUSSION: Summarizing we could show that ESWT on adipose tissue enhanced the cellular ATP content and modified the expression of single mesenchymal and vascular marker, and thus potentially provides a more regenerative cell population. Because the effectiveness of autologous cell therapy is dependent on the therapeutic potency of the patient's cells, this technology might raise the number of patients eligible for autologous cell transplantation.}, subject = {Shockwave Therapy}, language = {en} } @article{BachmannSpitzRothbaueretal., author = {Bachmann, Barbara and Spitz, Sarah and Rothbauer, Mario and Jordan, Christian and Purtscher, Michaela and Zirath, Helene and Schuller, Patrick and Eilenberger, Christoph and Ali, Syed Faheem and M{\"u}hleder, Severin and Priglinger, Eleni and Harasek, Michael and Redl, Heinz and Holnthoner, Wolfgang and Ertl, Peter}, title = {Engineering of three-dimensional pre-vascular networks within fibrin hydrogel constructs by microfluidic control over reciprocal cell signaling}, series = {Biomicrofluidics}, journal = {Biomicrofluidics}, subject = {Microfluidic}, language = {en} } @misc{Traxler, author = {Traxler, Lukas}, title = {Klare Sicht nach Grauem Star}, subject = {Intraocular Lenses}, language = {de} }