@article{SimsaMonforteSalzeretal., author = {Simsa, Robin and Monforte, Xavier and Salzer, Elias and Teuschl, Andreas and Jenndahl, Lachmi and Bergh, Niklas and Fogelstrand, Per}, title = {Effect of fluid dynamics on decellularization efficacy and mechanical properties of blood vessels.}, series = {PLoS One}, journal = {PLoS One}, subject = {Tissue Engineering}, language = {en} } @article{SimsaPadmaHeheretal., author = {Simsa, Robin and Padma, Arvind and Heher, Philipp and Hellstr{\"o}m, Mats and Teuschl, Andreas and Jenndahl, Lachmi and Bergh, Niklas and Fogelstrand, Per}, title = {Systematic in vitro comparison of decellularization protocols for blood vessels.}, series = {PLoS One}, journal = {PLoS One}, subject = {Tissue Engineering}, language = {en} } @article{NuernbergerSchneiderKeibletal., author = {N{\"u}rnberger, S. and Schneider, C. and Keibl, C. and Sch{\"a}dl, Barbara and Heimel, P. and Monforte, X. and Teuschl, A. H. and Nalbach, M. and Thurner, P. J. and Grillari, J. and Redl, Heinz and Wolbank, S.}, title = {Repopulation of decellularised articular cartilage by laser-based matrix engraving}, series = {EBioMedicine.}, volume = {64}, journal = {EBioMedicine.}, number = {103196.}, abstract = {Background: In spite of advances in the treatment of cartilage defects using cell and scaffold-based therapeutic strategies, the long-term outcome is still not satisfying since clinical scores decline years after treatment. Scaffold materials currently used in clinical settings have shown limitations in providing suitable biomechanical properties and an authentic and protective environment for regenerative cells. To tackle this problem, we developed a scaffold material based on decellularised human articular cartilage. Methods: Human articular cartilage matrix was engraved using a CO2 laser and treated for decellularisation and glycosaminoglycan removal. Characterisation of the resulting scaffold was performed via mechanical testing, DNA and GAG quantification and in vitro cultivation with adipose-derived stromal cells (ASC). Cell vitality, adhesion and chondrogenic differentiation were assessed. An ectopic, unloaded mouse model was used for the assessment of the in vivo performance of the scaffold in combination with ASC and human as well as bovine chondrocytes. The novel scaffold was compared to a commercial collagen type I/III scaffold. Findings: Crossed line engravings of the matrix allowed for a most regular and ubiquitous distribution of cells and chemical as well as enzymatic matrix treatment was performed to increase cell adhesion. The biomechanical characteristics of this novel scaffold that we term CartiScaff were found to be superior to those of commercially available materials. Neo-tissue was integrated excellently into the scaffold matrix and new collagen fibres were guided by the laser incisions towards a vertical alignment, a typical feature of native cartilage important for nutrition and biomechanics. In an ectopic, unloaded in vivo model, chondrocytes and mesenchymal stromal cells differentiated within the incisions despite the lack of growth factors and load, indicating a strong chondrogenic microenvironment within the scaffold incisions. Cells, most noticeably bone marrow-derived cells, were able to repopulate the empty chondrocyte lacunae inside the scaffold matrix. Interpretation: Due to the better load-bearing, its chondrogenic effect and the ability to guide matrix-deposition, CartiScaff is a promising biomaterial to accelerate rehabilitation and to improve long term clinical success of cartilage defect treatment. Funding: Austrian Research Promotion Agency FFG ("CartiScaff" \#842455), Lorenz B{\"o}hler Fonds (16/13), City of Vienna Competence Team Project Signaltissue (MA23, \#18-08). Keywords: Cartilage regeneration; Decellularisation; Ectopic animal model; Laser engraving; Mechanical testing; Repopulation.}, subject = {Tissue Engineering}, language = {en} } @article{TeuschlHolnthonerMonforte, author = {Teuschl, Andreas and Holnthoner, Wolfgang and Monforte, Xavier}, title = {Repopulation of an auricular cartilage scaffold, AuriScaff, perforated with an enzyme combination}, series = {Acta Biomater.}, volume = {2019}, journal = {Acta Biomater.}, number = {Mar/86}, pages = {207 -- 222}, abstract = {Biomaterials currently in use for articular cartilage regeneration do not mimic the composition or architecture of hyaline cartilage, leading to the formation of repair tissue with inferior characteristics. In this study we demonstrate the use of "AuriScaff", an enzymatically perforated bovine auricular cartilage scaffold, as a novel biomaterial for repopulation with regenerative cells and for the formation of high-quality hyaline cartilage. AuriScaff features a traversing channel network, generated by selective depletion of elastic fibers, enabling uniform repopulation with therapeutic cells. The complex collagen type II matrix is left intact, as observed by immunohistochemistry, SEM and TEM. The compressive modulus is diminished, but three times higher than in the clinically used collagen type I/III scaffold that served as control. Seeding tests with human articular chondrocytes (hAC) alone and in co-culture with human adipose-derived stromal/stem cells (ASC) confirmed that the network enabled cell migration throughout the scaffold. It also guides collagen alignment along the channels and, due to the generally traverse channel alignment, newly deposited cartilage matrix corresponds with the orientation of collagen within articular cartilage. In an osteochondral plug model, AuriScaff filled the complete defect with compact collagen type II matrix and enabled chondrogenic differentiation inside the channels. Using adult articular chondrocytes from bovine origin (bAC), filling of even deep defects with high-quality hyaline-like cartilage was achieved after 6 weeks in vivo. With its composition and spatial organization, AuriScaff provides an optimal chondrogenic environment for therapeutic cells to treat cartilage defects and is expected to improve long-term outcome by channel-guided repopulation followed by matrix deposition and alignment. STATEMENT OF SIGNIFICANCE: After two decades of tissue engineering for cartilage regeneration, there is still no optimal strategy available to overcome problems such as inconsistent clinical outcome, early and late graft failures. Especially large defects are dependent on biomaterials and their scaffolding, guiding and protective function. Considering the currently used biomaterials, structure and mechanical properties appear to be insufficient to fulfill this task. The novel scaffold developed within this study is the first approach enabling the use of dense cartilage matrix, repopulate it via channels and provide the cells with a compact collagen type II environment. Due to its density, it also provides better mechanical properties than materials currently used in clinics. We therefore think, that the auricular cartilage scaffold (AuriScaff) has a high potential to improve future cartilage regeneration approaches.}, subject = {Auricular cartilage}, language = {en} } @article{NuernbergerSchneidervanOschetal., author = {N{\"u}rnberger, Sylvia and Schneider, Cornelia and van Osch, Gerjo and Keibl, Claudia and Rieder, Bernhard and Monforte, Xavier and Teuschl, Andreas and M{\"u}hleder, Severin and Holnthoner, Wolfgang and Sch{\"a}dl, Barbara and Gahleitner, Christoph and Redl, Heinz and Wolbank, Susanne}, title = {Repopulation of an auricular cartilage scaffold, AuriScaff, perforated with an enzyme combination.}, series = {Acta Biomaterialia}, journal = {Acta Biomaterialia}, subject = {Tissue Engineering}, language = {en} } @article{SchneiderRohringerKapelleretal., author = {Schneider, Karl H. and Rohringer, Sabrina and Kapeller, Barbara and Grasl, Christian and Kiss, Herbert and Heber, Stefan and Walter, Ingrid and Teuschl, Andreas H. and Podesser, Bruno K. and Bergmeister, Helga}, title = {Riboflavin-mediated photooxidation to improve the characteristics of decellularized human arterial small diameter vascular grafts}, series = {Acta Biomaterialia}, volume = {116}, journal = {Acta Biomaterialia}, pages = {246 -- 258}, abstract = {Vascular grafts with a diameter of less than 6 mm are made from a variety of materials and techniques to provide alternatives to autologous vascular grafts. Decellularized materials have been proposed as a possible approach to create extracellular matrix (ECM) vascular prostheses as they are naturally derived and inherently support various cell functions. However, these desirable graft characteristics may be limited by alterations of the ECM during the decellularization process leading to decreased biomechanical properties and hemocompatibility. In this study, arteries from the human placenta chorion were decellularized using two distinct detergents (Triton X-100 or SDS), which differently affect ECM ultrastructure. To overcome biomechanical strength loss and collagen fiber exposure after decellularization, riboflavin-mediated UV (RUV) crosslinking was used to uniformly crosslink the collagenous ECM of the grafts. Graft characteristics and biocompatibility with and without RUV crosslinking were studied in vitro and in vivo. RUV-crosslinked ECM grafts showed significantly improved mechanical strength and smoothening of the luminal graft surfaces. Cell seeding using human endothelial cells revealed no cytotoxic effects of the RUV treatment. Short-term aortic implants in rats showed cell migration and differentiation of host cells. Functional graft remodeling was evident in all grafts. Thus, RUV crosslinking is a preferable tool to improve graft characteristics of decellularized matrix conduits.}, subject = {Tissue Engineering}, language = {en} }