@article{BerkovitchCohenPeledetal., author = {Berkovitch, Yulia and Cohen, Talia and Peled, Eli and Schmidhammer, Robert and Hildner, Florian and Teuschl, Andreas and Wolbank, Susanne and Yelin, Dvir and Redl, Heinz and Seliktar, Dror}, title = {Hydrogel composition and laser micropatterning to regulate sciatic nerve regeneration.}, series = {Journal of Tissue Engineering and Regenerative Medicine}, journal = {Journal of Tissue Engineering and Regenerative Medicine}, pages = {1049 -- 1061}, abstract = {Treatment of peripheral nerve injuries has evolved over the past several decades to include the use of sophisticated new materials endowed with trophic and topographical cues that are essential for in vivo nerve fibre regeneration. In this research, we explored the use of an advanced design strategy for peripheral nerve repair, using biological and semi-synthetic hydrogels that enable controlled environmental stimuli to regenerate neurons and glial cells in a rat sciatic nerve resection model. The provisional nerve growth conduits were composed of either natural fibrin or adducts of synthetic polyethylene glycol and fibrinogen or gelatin. A photo-patterning technique was further applied to these 3D hydrogel biomaterials, in the form of laser-ablated microchannels, to provide contact guidance for unidirectional growth following sciatic nerve injury. We tested the regeneration capacity of subcritical nerve gap injuries in rats treated with photo-patterned materials and compared these with injuries treated with unpatterned hydrogels, either stiff or compliant. Among the factors tested were shear modulus, biological composition, and micropatterning of the materials. The microchannel guidance patterns, combined with appropriately matched degradation and stiffness properties of the material, proved most essential for the uniform tissue propagation during the nerve regeneration process.}, subject = {Tissue Engineering}, language = {en} } @article{BerkovitchCohenPeledetal., author = {Berkovitch, Yulia and Cohen, Talia and Peled, Eli and Schmidhammer, Robert and Hildner, Florian and Teuschl, Andreas and Wolbank, Susanne and Yelin, Dvir and Redl, Heinz and Seliktar, Dror}, title = {Hydrogel Composition and Laser Micro-Patterning to Regulate Sciatic Nerve Regeneration}, series = {Journal of Tissue Engineering and Regenerative Medicine}, volume = {12}, journal = {Journal of Tissue Engineering and Regenerative Medicine}, number = {4}, subject = {Micro-Patterning}, language = {en} } @article{LauerPrahmThieletal., author = {Lauer, Henrik and Prahm, Cosima and Thiel, Johannes Tobias and Kolbenschlag, Jonas and Daigeler, Adrien and Hercher, David and Heinzel, Johannes Christoph}, title = {The Grasping Test Revisited: A Systematic Review of Functional Recovery in Rat Models of Median Nerve Injury}, series = {Biomedicines}, volume = {2022}, journal = {Biomedicines}, number = {10(8)}, pages = {1878}, abstract = {The rat median nerve model is a well-established and frequently used model for peripheral nerve injury and repair. The grasping test is the gold-standard to evaluate functional recovery in this model. However, no comprehensive review exists to summarize the course of functional recovery in regard to the lesion type. According to PRISMA-guidelines, research was performed, including the databases PubMed and Web of Science. Groups were: (1) crush injury, (2) transection with end-to-end or with (3) end-to-side coaptation and (4) isogenic or acellular allogenic grafting. Total and respective number, as well as rat strain, type of nerve defect, length of isogenic or acellular allogenic allografts, time at first signs of motor recovery (FSR) and maximal recovery grasping strength (MRGS), were evaluated. In total, 47 articles met the inclusion criteria. Group I showed earliest signs of motor recovery. Slow recovery was observable in group III and in graft length above 25 mm. Isografts recovered faster compared to other grafts. The onset and course of recovery is heavily dependent from the type of nerve injury. The grasping test should be used complementary in addition to other volitional and non-volitional tests. Repetitive examinations should be planned carefully to optimize assessment of valid and reliable data.}, subject = {Tissue Engineering}, language = {en} }