TY - JOUR A1 - Hackethal, Johannes A1 - Dungel, Peter A1 - Teuschl, Andreas Herbert T1 - Frequently Used Strategies to Isolate Extracellular Matrix Proteins from Human Placenta and Adipose Tissue JF - Tissue Engineering Part C: Methods N2 - The natural extracellular matrix (ECM) provides the optimal environment for cells. Many enzymatic or non-enzymatic based strategies to extract ECM proteins from tissues were published over the past years. However, every single isolation strategy reported so far is associated with specific bottlenecks. In this study, frequently used strategies to isolate ECM from human placenta or adipose tissue using Tris-, serum-, or pepsin-based buffers were compared. The resulting ECM proteins were biochemically characterized by analysis of cellular remnants using Hoechst DNA staining, glycosaminoglycan (GAG) content by dimethylmethylene blue, visualization of protein bands using sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis combined with amino acid quantification, and assessment of the proangiogenic profile using an angiogenesis array. Tris-NaCl-extracted ECM proteins showed a high heterogenic degree of extracted proteins, bioactive growth factors, and GAGs, but no collagen-I. Active serum-extracted ECM showed significant lower DNA remnants when compared with the Tris-NaCl isolation strategy. Pepsin-extracted ECM was rich in collagen-I and low amounts of remaining bioactive growth factors. This strategy was most effective to reduce DNA amounts when compared with the other isolation strategies. Pepsin-extracted ECM from both tissues easily gelled at 37°C, whereas the other extracted ECM strategies did not gel at 37°C (Tris-NaCl: liquid; serum: sponge). All relevant characteristics (DNA residues, ECM diversity and bioactivity, shape) of the extracted ECM proteins highly depend on its isolation strategy and could still be optimized. Impact statement The natural human extracellular matrix (ECM) is the ideal cell niche. Various strategies were reported to isolate human ECM components from various sources. In this article, we compared frequently used methods and compared their characteristics (DNA remnants, glycosaminoglycan content, sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, amino acid quantification, angiogenesis array, and gel formation). We conclude that more research is still necessary to optimize current isolation approaches for in vitro or in vivo applications of human ECM. KW - Tissue Engineering KW - Biomaterials KW - Adipose Tissue KW - extracellular matrix KW - human placenta Y1 - VL - 27 IS - 12 SP - 649 EP - 660 ER - TY - CHAP A1 - Hackethal, Johannes A1 - Schuh, Christina A1 - Hofer, Alexandra A1 - Meixner, Barbara A1 - Hennerbichler, Simone A1 - Redl, Heinz A1 - Teuschl, Andreas T1 - Human Placenta Laminin-111 as a Multifunctional Protein for Tissue Engineering and Regenerative Medicine T2 - Advances in Experimental Medicine and Biology KW - Biomaterial KW - Tissue Engineering KW - Regenerative medicine Y1 - PB - Springer ER - TY - JOUR A1 - Hackethal, Johannes A1 - Mühleder, Severin A1 - Hofer, Alexandra A1 - Schneider, Karl Heinrich A1 - Prüller, Johanna A1 - Hennerbichler, Simone A1 - Redl, Heinz A1 - Teuschl, Andreas T1 - An Effective Method of Atelocollagen Type 1/3 Isolation from Human Placenta and Its In Vitro Characterization in Two-Dimensional and Three-Dimensional Cell Culture Applications JF - Tissue Eng Part C Methods KW - Placenta KW - In Vitro KW - Cell Culture Y1 - 2018 VL - 23 IS - 5 SP - 274 EP - 285 ER -