TY - JOUR A1 - Deininger, Christian A1 - Wagner, Andrea A1 - Heimel, Patrick A1 - Salzer, Elias A1 - Monforte Vila, Xavier A1 - Weißenbacher, Nadja A1 - Grillari, Johannes A1 - Redl, Heinz A1 - Wichlas, Florian A1 - Freude, Thomas A1 - Tempfer, Herbert A1 - Teuschl-Woller, Andreas A1 - Traweger, Andreas T1 - Enhanced BMP-2-Mediated Bone Repair Using an Anisotropic Silk Fibroin Scaffold Coated with Bone-like Apatite JF - Int. J. Mol. Sci. N2 - The repair of large bone defects remains challenging and often requires graft material due to limited availability of autologous bone. In clinical settings, collagen sponges loaded with excessive amounts of bone morphogenetic protein 2 (rhBMP-2) are occasionally used for the treatment of bone non-unions, increasing the risk of adverse events. Therefore, strategies to reduce rhBMP-2 dosage are desirable. Silk scaffolds show great promise due to their favorable biocompatibility and their utility for various biofabrication methods. For this study, we generated silk scaffolds with axially aligned pores, which were subsequently treated with 10× simulated body fluid (SBF) to generate an apatitic calcium phosphate coating. Using a rat femoral critical sized defect model (CSD) we evaluated if the resulting scaffold allows the reduction of BMP-2 dosage to promote efficient bone repair by providing appropriate guidance cues. Highly porous, anisotropic silk scaffolds were produced, demonstrating good cytocompatibility in vitro and treatment with 10× SBF resulted in efficient surface coating. In vivo, the coated silk scaffolds loaded with a low dose of rhBMP-2 demonstrated significantly improved bone regeneration when compared to the unmineralized scaffold. Overall, our findings show that this simple and cost-efficient technique yields scaffolds that enhance rhBMP-2 mediated bone healing. KW - Tissue Engineering KW - Biomaterials KW - silk scaffold KW - bone regeneration KW - pseudoarthrosis Y1 - VL - 23 IS - 1 / 283 ER - TY - JOUR A1 - Bernhard, Jonathan A1 - Ferguson, James A1 - Rieder, Bernhard A1 - Heimel, Patrick A1 - Nau, Thomas A1 - Tangl, Stefan A1 - Redl, Heinz A1 - Vunjak-Novakovic, Gordana T1 - Tissue-engineered hypertrophic chondrocyte grafts enhanced long bone repair biomaterials JF - Biomaterials KW - Grafting KW - Biomaterials Y1 - 2018 IS - 139 SP - 202 EP - 212 ER -