TY - JOUR A1 - Schneider, Cornelia A1 - Lehmann, Johannes A1 - van Osch, Gerjo A1 - Hildner, Florian A1 - Teuschl, Andreas A1 - Monforte Vila, Xavier A1 - Miosga, David A1 - Heimel, Patrick A1 - Priglinger, Eleni A1 - Redl, Heinz A1 - Wolbank, Susanne A1 - Nürnberger, Sylvia T1 - Systematic Comparison of Protocols for the Preparation of Human Articular Cartilage for Use as Scaffold Material in Cartilage Tissue Engineering JF - Tissue Eng Part C Methods KW - Cartilage KW - Scaffold Material Y1 - 2018 VL - 22 IS - 12 ER - TY - GEN A1 - Mühleder, Severin A1 - Fuchs, Christiane A1 - Bassilio, Jose A1 - Sczwarc, Dorota A1 - Pill, Karoline A1 - Slezak, Paul A1 - Labuda, Krystina A1 - Siehs, Christian A1 - Pröll, Johannes A1 - Priglinger, Eleni A1 - Redl, Heinz A1 - Holnthoner, Wolfgang T1 - The purinergic receptor P2Y2 modulates endothelial sprouting and angiogenesis KW - Angiogenesis Y1 - 2018 ER - TY - JOUR A1 - Priglinger, Eleni A1 - Schuh, Christina A1 - Steffenhagen, Carolin A1 - Wurzer, Christoph A1 - Maier, Julia A1 - Nürnberger, Sylvia A1 - Holnthoner, Wolfgang A1 - Fuchs, Christiane A1 - Suessner, Susanne A1 - Rünzler, Dominik A1 - Redl, Heinz A1 - Wolbank, Susanne T1 - Improvement of adipose tissue-derived cells by low-energy extracorporeal shock wave therapy. JF - Cytotherapy N2 - BACKGROUND: Cell-based therapies with autologous adipose tissue-derived cells have shown great potential in several clinical studies in the last decades. The majority of these studies have been using the stromal vascular fraction (SVF), a heterogeneous mixture of fibroblasts, lymphocytes, monocytes/macrophages, endothelial cells, endothelial progenitor cells, pericytes and adipose-derived stromal/stem cells (ASC) among others. Although possible clinical applications of autologous adipose tissue-derived cells are manifold, they are limited by insufficient uniformity in cell identity and regenerative potency. METHODS: In our experimental set-up, low-energy extracorporeal shock wave therapy (ESWT) was performed on freshly obtained human adipose tissue and isolated adipose tissue SVF cells aiming to equalize and enhance stem cell properties and functionality. RESULTS: After ESWT on adipose tissue we could achieve higher cellular adenosine triphosphate (ATP) levels compared with ESWT on the isolated SVF as well as the control. ESWT on adipose tissue resulted in a significantly higher expression of single mesenchymal and vascular marker compared with untreated control. Analysis of SVF protein secretome revealed a significant enhancement in insulin-like growth factor (IGF)-1 and placental growth factor (PLGF) after ESWT on adipose tissue. DISCUSSION: Summarizing we could show that ESWT on adipose tissue enhanced the cellular ATP content and modified the expression of single mesenchymal and vascular marker, and thus potentially provides a more regenerative cell population. Because the effectiveness of autologous cell therapy is dependent on the therapeutic potency of the patient's cells, this technology might raise the number of patients eligible for autologous cell transplantation. KW - Shockwave Therapy KW - Tissue Regeneration KW - Regenerative Medicine Y1 - SP - 1079 EP - 1095 ER - TY - JOUR A1 - Bachmann, Barbara A1 - Spitz, Sarah A1 - Rothbauer, Mario A1 - Jordan, Christian A1 - Purtscher, Michaela A1 - Zirath, Helene A1 - Schuller, Patrick A1 - Eilenberger, Christoph A1 - Ali, Syed Faheem A1 - Mühleder, Severin A1 - Priglinger, Eleni A1 - Harasek, Michael A1 - Redl, Heinz A1 - Holnthoner, Wolfgang A1 - Ertl, Peter T1 - Engineering of three-dimensional pre-vascular networks within fibrin hydrogel constructs by microfluidic control over reciprocal cell signaling JF - Biomicrofluidics KW - Microfluidic KW - Vascularization KW - Tissue Engineering Y1 - 2019 ER - TY - JOUR A1 - Schneider, Jaana A1 - Pultar, Marianne A1 - Oesterreicher, Johannes A1 - Bobbili, Madhusudhan Reddy A1 - Mühleder, Severin A1 - Priglinger, Eleni A1 - Redl, Heinz A1 - Spittler, Andreas A1 - Grillari, Johannes A1 - Holnthoner, Wolfgang T1 - Cre mRNA Is Not Transferred by EVs from Endothelial and Adipose-Derived Stromal/Stem Cells during Vascular Network Formation JF - Int J Mol Sci. N2 - Coculture systems employing adipose tissue-derived mesenchymal stromal/stem cells (ASC) and endothelial cells (EC) represent a widely used technique to model vascularization. Within this system, cell-cell communication is crucial for the achievement of functional vascular network formation. Extracellular vesicles (EVs) have recently emerged as key players in cell communication by transferring bioactive molecules between cells. In this study we aimed to address the role of EVs in ASC/EC cocultures by discriminating between cells, which have received functional EV cargo from cells that have not. Therefore, we employed the Cre-loxP system, which is based on donor cells expressing the Cre recombinase, whose mRNA was previously shown to be packaged into EVs and reporter cells containing a construct of floxed dsRed upstream of the eGFP coding sequence. The evaluation of Cre induced color switch in the reporter system via EVs indicated that there is no EV-mediated RNA transmission either between EC themselves or EC and ASC. However, since Cre mRNA was not found present in EVs, it remains unclear if Cre mRNA is generally not packaged into EVs or if EVs are not taken up by the utilized cell types. Our data indicate that this technique may not be applicable to evaluate EV-mediated cell-to-cell communication in an in vitro setting using EC and ASC. Further investigations will require a functional system showing efficient and specific loading of Cre mRNA or protein into EVs. KW - Tissue Engineering KW - Stem Cells KW - Vascular Network Formation KW - EVs KW - Endothelial Cells Y1 - VL - 2021 IS - 22(8) SP - 4050 ER - TY - JOUR A1 - Strohmeier, Karin A1 - Hofmann, Martina A1 - Jacak, Jaroslaw A1 - Narzt, Marie-Sophie A1 - Wahlmueller, Marlene A1 - Mairhofer, Mario A1 - Schädl, Barbara A1 - Holnthoner, Wolfgang A1 - Barsch, Martin A1 - Sandhofer, Matthias A1 - Wolbank, Susanne A1 - Priglinger, Eleni T1 - Multi-Level Analysis of Adipose Tissue Reveals the Relevance of Perivascular Subpopulations and an Increased Endothelial Permeability in Early-Stage Lipedema JF - Biomedicines N2 - Lipedema is a chronic, progressive disease of adipose tissue with unknown etiology. Based on the relevance of the stromal vascular fraction (SVF) cell population in lipedema, we performed a thorough characterization of subcutaneous adipose tissue, SVF isolated thereof and the sorted populations of endothelial cells (EC), pericytes and cultured adipose-derived stromal/stem cells (ASC) of early-stage lipedema patients. We employed histological and gene expression analysis and investigated the endothelial barrier by immunofluorescence and analysis of endothelial permeability in vitro. Although there were no significant differences in histological stainings, we found altered gene expression of factors relevant for local estrogen metabolism (aromatase), preadipocyte commitment (ZNF423) and immune cell infiltration (CD11c) in lipedema on the tissue level, as well as in distinct cellular subpopulations. Machine learning analysis of immunofluorescence images of CD31 and ZO-1 revealed a morphological difference in the cellular junctions of EC cultures derived from healthy and lipedema individuals. Furthermore, the secretome of lipedema-derived SVF cells was sufficient to significantly increase leakiness of healthy human primary EC, which was also reflected by decreased mRNA expression of VE-cadherin. Here, we showed for the first time that the secretome of SVF cells creates an environment that triggers endothelial barrier dysfunction in early-stage lipedema. Moreover, since alterations in gene expression were detected on the cellular and/or tissue level, the choice of sample material is of high importance in elucidating this complex disease. KW - Tissue Engineering KW - Adipose Tissue KW - Lipedema KW - Endothelial Cells Y1 - VL - 2022 IS - 10(5) SP - 1163 ER - TY - JOUR A1 - Hromada, Carina A1 - Hartmann, Jaana A1 - Oesterreicher, Johannes A1 - Stoiber, Anton A1 - Daerr, Anna A1 - Schädl, Barbara A1 - Priglinger, Eleni A1 - Teuschl-Woller, Andreas H. A1 - Holnthoner, Wolfgang A1 - Heinzel, Johannes Christoph A1 - Hercher, David T1 - Occurrence of Lymphangiogenesis in Peripheral Nerve Autografts Contrasts Schwann Cell-Induced Apoptosis of Lymphatic Endothelial Cells In Vitro JF - Biomolecules N2 - Peripheral nerve injuries pose a major clinical concern world-wide, and functional recovery after segmental peripheral nerve injury is often unsatisfactory, even in cases of autografting. Although it is well established that angiogenesis plays a pivotal role during nerve regeneration, the influence of lymphangiogenesis is strongly under-investigated. In this study, we analyzed the presence of lymphatic vasculature in healthy and regenerated murine peripheral nerves, revealing that nerve autografts contained increased numbers of lymphatic vessels after segmental damage. This led us to elucidate the interaction between lymphatic endothelial cells (LECs) and Schwann cells (SCs) in vitro. We show that SC and LEC secretomes did not influence the respective other cell types' migration and proliferation in 2D scratch assay experiments. Furthermore, we successfully created lymphatic microvascular structures in SC-embedded 3D fibrin hydrogels, in the presence of supporting cells; whereas SCs seemed to exert anti-lymphangiogenic effects when cultured with LECs alone. Here, we describe, for the first time, increased lymphangiogenesis after peripheral nerve injury and repair. Furthermore, our findings indicate a potential lymph-repellent property of SCs, thereby providing a possible explanation for the lack of lymphatic vessels in the healthy endoneurium. Our results highlight the importance of elucidating the molecular mechanisms of SC-LEC interaction. KW - Tissue Engineering KW - peripheral nerve regeneration KW - lymphangiogenesis KW - Schwann cells KW - lymphatic endothelial cells Y1 - VL - 2022 IS - 12, 6 SP - 820 ER -