TY - JOUR A1 - Schneider, Jaana A1 - Pultar, Marianne A1 - Oesterreicher, Johannes A1 - Bobbili, Madhusudhan Reddy A1 - Mühleder, Severin A1 - Priglinger, Eleni A1 - Redl, Heinz A1 - Spittler, Andreas A1 - Grillari, Johannes A1 - Holnthoner, Wolfgang T1 - Cre mRNA Is Not Transferred by EVs from Endothelial and Adipose-Derived Stromal/Stem Cells during Vascular Network Formation JF - Int J Mol Sci. N2 - Coculture systems employing adipose tissue-derived mesenchymal stromal/stem cells (ASC) and endothelial cells (EC) represent a widely used technique to model vascularization. Within this system, cell-cell communication is crucial for the achievement of functional vascular network formation. Extracellular vesicles (EVs) have recently emerged as key players in cell communication by transferring bioactive molecules between cells. In this study we aimed to address the role of EVs in ASC/EC cocultures by discriminating between cells, which have received functional EV cargo from cells that have not. Therefore, we employed the Cre-loxP system, which is based on donor cells expressing the Cre recombinase, whose mRNA was previously shown to be packaged into EVs and reporter cells containing a construct of floxed dsRed upstream of the eGFP coding sequence. The evaluation of Cre induced color switch in the reporter system via EVs indicated that there is no EV-mediated RNA transmission either between EC themselves or EC and ASC. However, since Cre mRNA was not found present in EVs, it remains unclear if Cre mRNA is generally not packaged into EVs or if EVs are not taken up by the utilized cell types. Our data indicate that this technique may not be applicable to evaluate EV-mediated cell-to-cell communication in an in vitro setting using EC and ASC. Further investigations will require a functional system showing efficient and specific loading of Cre mRNA or protein into EVs. KW - Tissue Engineering KW - Stem Cells KW - Vascular Network Formation KW - EVs KW - Endothelial Cells Y1 - VL - 2021 IS - 22(8) SP - 4050 ER - TY - JOUR A1 - Strohmeier, Karin A1 - Hofmann, Martina A1 - Jacak, Jaroslaw A1 - Narzt, Marie-Sophie A1 - Wahlmueller, Marlene A1 - Mairhofer, Mario A1 - Schädl, Barbara A1 - Holnthoner, Wolfgang A1 - Barsch, Martin A1 - Sandhofer, Matthias A1 - Wolbank, Susanne A1 - Priglinger, Eleni T1 - Multi-Level Analysis of Adipose Tissue Reveals the Relevance of Perivascular Subpopulations and an Increased Endothelial Permeability in Early-Stage Lipedema JF - Biomedicines N2 - Lipedema is a chronic, progressive disease of adipose tissue with unknown etiology. Based on the relevance of the stromal vascular fraction (SVF) cell population in lipedema, we performed a thorough characterization of subcutaneous adipose tissue, SVF isolated thereof and the sorted populations of endothelial cells (EC), pericytes and cultured adipose-derived stromal/stem cells (ASC) of early-stage lipedema patients. We employed histological and gene expression analysis and investigated the endothelial barrier by immunofluorescence and analysis of endothelial permeability in vitro. Although there were no significant differences in histological stainings, we found altered gene expression of factors relevant for local estrogen metabolism (aromatase), preadipocyte commitment (ZNF423) and immune cell infiltration (CD11c) in lipedema on the tissue level, as well as in distinct cellular subpopulations. Machine learning analysis of immunofluorescence images of CD31 and ZO-1 revealed a morphological difference in the cellular junctions of EC cultures derived from healthy and lipedema individuals. Furthermore, the secretome of lipedema-derived SVF cells was sufficient to significantly increase leakiness of healthy human primary EC, which was also reflected by decreased mRNA expression of VE-cadherin. Here, we showed for the first time that the secretome of SVF cells creates an environment that triggers endothelial barrier dysfunction in early-stage lipedema. Moreover, since alterations in gene expression were detected on the cellular and/or tissue level, the choice of sample material is of high importance in elucidating this complex disease. KW - Tissue Engineering KW - Adipose Tissue KW - Lipedema KW - Endothelial Cells Y1 - VL - 2022 IS - 10(5) SP - 1163 ER -