TY - JOUR A1 - Rothbauer, Mario A1 - Byrne, Ruth A. A1 - Schobesberger, Silvia A1 - Olmos Calvo, Isabel A1 - Fischer, Anita A1 - Reihs, Eva I. A1 - Spitz, Sarah A1 - Bachmann, Barbara A1 - Sevelda, Florian A1 - Holinka, Johannes A1 - Holnthoner, Wolfgang A1 - Redl, Heinz A1 - Toegel, Stefan A1 - Windhager, Reinhard A1 - Kiener, Hans P. A1 - Ertl, Peter T1 - Establishment of a human three-dimensional chip-based chondro-synovial coculture joint model for reciprocal cross talk studies in arthritis research JF - Lab on a Chip N2 - Rheumatoid arthritis is characterised by a progressive, intermittent inflammation at the synovial membrane, which ultimately leads to the destruction of the synovial joint. The synovial membrane as the joint capsule's inner layer is lined with fibroblast-like synoviocytes that are the key player supporting persistent arthritis leading to bone erosion and cartilage destruction. While microfluidic models that model molecular aspects of bone erosion between bone-derived cells and synoviocytes have been established, RA's synovial-chondral axis has not yet been realised using a microfluidic 3D model based on human patient in vitro cultures. Consequently, we established a chip-based three-dimensional tissue coculture model that simulates the reciprocal cross talk between individual synovial and chondral organoids. When co-cultivated with synovial organoids, we could demonstrate that chondral organoids induce a higher degree of cartilage physiology and architecture and show differential cytokine response compared to their respective monocultures highlighting the importance of reciprocal tissue-level cross talk in the modelling of arthritic diseases. KW - Tissue Engineering KW - coculture joint model KW - arthritis KW - human three-dimensional chip Y1 - VL - 2021 IS - 21 SP - 4128 EP - 4143 ER -