TY - GEN A1 - Sauermann, Stefan T1 - Die Gazelle in der Krankenhaus-IT – neue Wege für die Sicherheitstechnische Kontrolle und Leistungsüberprüfung KW - Krankenhaus IT Y1 - 2020 ER - TY - GEN A1 - Sauermann, Stefan T1 - Presentation of successful use of IHE profiles in national strategies (Austria and Switzerland) KW - eHealth Y1 - 2020 ER - TY - GEN A1 - Sauermann, Stefan T1 - Interoperabilität von Prozessen und IT-Systemen im Gesundheitswesen KW - QM und Digitalisierung KW - Interoperabilität Y1 - 2020 ER - TY - GEN A1 - Sauermann, Stefan T1 - Forum Spital für Manager 2019 - Digitalisierung im Krankenhaus - Vorsitzender KW - eHealth KW - Digitalisierung im Krankenhaus Y1 - 2020 ER - TY - GEN A1 - Sauermann, Stefan T1 - Data and Integrated Health Care: � Potential and Challenges of IT innovation KW - eHealth Y1 - 2020 ER - TY - GEN A1 - Sauermann, Stefan T1 - The potential of multi-stakeholder alignment in diabetes KW - Diabetes Y1 - 2020 ER - TY - GEN A1 - Sauermann, Stefan T1 - IHE Education & IHE Internationales KW - Health Interoperability KW - eHealth Y1 - 2020 ER - TY - JOUR A1 - Pasteka, Richard A1 - Forjan, Mathias A1 - Sauermann, Stefan A1 - Drauschke, Andreas T1 - Electro-mechanical Lung Simulator Using Polymer and Organic Human Lung Equivalents for Realistic Breathing Simulation JF - Scientific Reports N2 - Simulation models in respiratory research are increasingly used for medical product development and testing, especially because in-vivo models are coupled with a high degree of complexity and ethical concerns. This work introduces a respiratory simulation system, which is bridging the gap between the complex, real anatomical environment and the safe, cost-effective simulation methods. The presented electro-mechanical lung simulator, xPULM, combines in-silico, ex-vivo and mechanical respiratory approaches by realistically replicating an actively breathing human lung. The reproducibility of sinusoidal breathing simulations with xPULM was verified for selected breathing frequencies (10–18 bpm) and tidal volumes (400–600 ml) physiologically occurring during human breathing at rest. Human lung anatomy was modelled using latex bags and primed porcine lungs. High reproducibility of flow and pressure characteristics was shown by evaluating breathing cycles (nTotal = 3273) with highest standard deviation |3σ| for both, simplified lung equivalents (μV˙ = 23.98 ± 1.04 l/min, μP = −0.78 ± 0.63 hPa) and primed porcine lungs (μV˙ = 18.87 ± 2.49 l/min, μP = −21.13 ± 1.47 hPa). The adaptability of the breathing simulation parameters, coupled with the use of porcine lungs salvaged from a slaughterhouse process, represents an advancement towards anatomically and physiologically realistic modelling of human respiration. KW - Breathing Simulation KW - Lung Simulator KW - Biomedical Engineering Y1 - 2020 VL - Vol 9 IS - No. 1 SP - Article number: 19778 ER -