TY - JOUR A1 - Khimich, Margarita A. A1 - Prosolov, Konstantin A. A1 - Mishurova, Tatiana A1 - Evsevleev, Sergej A1 - Monforte, Xavier A1 - Teuschl, Andreas H. A1 - Slezak, Paul A1 - Ibragimov, Egor A. A1 - Saprykin, Alexander A. A1 - Kovalevskaya, Zhanna G. A1 - Dmitriev, Andrey I. A1 - Bruno, Giovanni A1 - Sharkeev, Yurii P. T1 - Advances in Laser Additive Manufacturing of Ti-Nb Alloys: From Nanostructured Powders to Bulk Objects JF - Nanomaterials (Basel) N2 - The additive manufacturing of low elastic modulus alloys that have a certain level of porosity for biomedical needs is a growing area of research. Here, we show the results of manufacturing of porous and dense samples by a laser powder bed fusion (LPBF) of Ti-Nb alloy, using two distinctive fusion strategies. The nanostructured Ti-Nb alloy powders were produced by mechanical alloying and have a nanostructured state with nanosized grains up to 90 nm. The manufactured porous samples have pronounced open porosity and advanced roughness, contrary to dense samples with a relatively smooth surface profile. The structure of both types of samples after LPBF is formed by uniaxial grains having micro- and nanosized features. The inner structure of the porous samples is comprised of an open interconnected system of pores. The volume fraction of isolated porosity is 2 vol. % and the total porosity is 20 vol. %. Cell viability was assessed in vitro for 3 and 7 days using the MG63 cell line. With longer culture periods, cells showed an increased cell density over the entire surface of a porous Ti-Nb sample. Both types of samples are not cytotoxic and could be used for further in vivo studies. KW - Tissue Engineering KW - Biomaterials KW - Laser Additive Manufacturing KW - Bulk Objects Y1 - VL - 11 IS - 5 / 1159 ER -