TY - JOUR A1 - Quartinello, Felice A1 - Tallian, Claudia A1 - Auer, Julia A1 - Schön, Herta A1 - Vielnascher, Robert A1 - Weinberger, Simone A1 - Wieland, Karin A1 - Weihs, Anna A1 - Rollett, Alexandra A1 - Lendl, Bernhard A1 - Teuschl, Andreas A1 - Pellis, Alessandro A1 - Gübitz, Georg T1 - Smart Textiles in Wound Care: Functionalization of Cotton/PET Blends with Antimicrobial Nanocapsules JF - Journal of Materials Chemistry B KW - Smart textiles KW - Tissue Engineering KW - Regenerative Medicine KW - Antimicrobial KW - Wound Y1 - 2019 ER - TY - JOUR A1 - Feichtinger, Xaver A1 - Monforte, Xavier A1 - Keibl, Claudia A1 - Hercher, David A1 - Schanda, Jakob A1 - Teuschl, Andreas A1 - Muschitz, Christian A1 - Redl, Heinz A1 - Fialka, Christian A1 - Mittermayr, Rainer T1 - Substantial Biomechanical Improvement by Extracorporeal Shockwave Therapy After Surgical Repair of Rodent Chronic Rotator Cuff Tears. JF - American Journal of Sports Medicine KW - Shockwave Therapy KW - Tissue Engineering KW - Regeneration KW - Surgery Y1 - ER - TY - JOUR A1 - Teuschl, Andreas A1 - Tangl, Stefan A1 - Heimel, Patrick A1 - Schwarze, Uwe Yacine A1 - Monforte, Xavier A1 - Redl, Heinz A1 - Nau, Thomas T1 - Osteointegration of a Novel Silk Fiber-Based ACL Scaffold by Formation of a Ligament-Bone Interface. JF - American Journal of Sports Medicine KW - Tissue Engineering KW - Silk KW - Scaffold KW - ACL Y1 - ER - TY - JOUR A1 - Simsa, Robin A1 - Monforte, Xavier A1 - Salzer, Elias A1 - Teuschl, Andreas A1 - Jenndahl, Lachmi A1 - Bergh, Niklas A1 - Fogelstrand, Per T1 - Effect of fluid dynamics on decellularization efficacy and mechanical properties of blood vessels. JF - PLoS One KW - Tissue Engineering KW - Decellularization KW - Blood Vessel Y1 - ER - TY - JOUR A1 - Teuschl, Andreas A1 - Holnthoner, Wolfgang A1 - Monforte, Xavier T1 - Repopulation of an auricular cartilage scaffold, AuriScaff, perforated with an enzyme combination JF - Acta Biomater. N2 - Biomaterials currently in use for articular cartilage regeneration do not mimic the composition or architecture of hyaline cartilage, leading to the formation of repair tissue with inferior characteristics. In this study we demonstrate the use of "AuriScaff", an enzymatically perforated bovine auricular cartilage scaffold, as a novel biomaterial for repopulation with regenerative cells and for the formation of high-quality hyaline cartilage. AuriScaff features a traversing channel network, generated by selective depletion of elastic fibers, enabling uniform repopulation with therapeutic cells. The complex collagen type II matrix is left intact, as observed by immunohistochemistry, SEM and TEM. The compressive modulus is diminished, but three times higher than in the clinically used collagen type I/III scaffold that served as control. Seeding tests with human articular chondrocytes (hAC) alone and in co-culture with human adipose-derived stromal/stem cells (ASC) confirmed that the network enabled cell migration throughout the scaffold. It also guides collagen alignment along the channels and, due to the generally traverse channel alignment, newly deposited cartilage matrix corresponds with the orientation of collagen within articular cartilage. In an osteochondral plug model, AuriScaff filled the complete defect with compact collagen type II matrix and enabled chondrogenic differentiation inside the channels. Using adult articular chondrocytes from bovine origin (bAC), filling of even deep defects with high-quality hyaline-like cartilage was achieved after 6 weeks in vivo. With its composition and spatial organization, AuriScaff provides an optimal chondrogenic environment for therapeutic cells to treat cartilage defects and is expected to improve long-term outcome by channel-guided repopulation followed by matrix deposition and alignment. STATEMENT OF SIGNIFICANCE: After two decades of tissue engineering for cartilage regeneration, there is still no optimal strategy available to overcome problems such as inconsistent clinical outcome, early and late graft failures. Especially large defects are dependent on biomaterials and their scaffolding, guiding and protective function. Considering the currently used biomaterials, structure and mechanical properties appear to be insufficient to fulfill this task. The novel scaffold developed within this study is the first approach enabling the use of dense cartilage matrix, repopulate it via channels and provide the cells with a compact collagen type II environment. Due to its density, it also provides better mechanical properties than materials currently used in clinics. We therefore think, that the auricular cartilage scaffold (AuriScaff) has a high potential to improve future cartilage regeneration approaches. KW - Auricular cartilage KW - Cartilage Regeneration KW - Human adipose derived stromal/stem cells KW - Tissue Engineering KW - Decellularization Y1 - 2020 VL - 2019 IS - Mar/86 SP - 207 EP - 222 ER - TY - JOUR A1 - Nürnberger, Sylvia A1 - Schneider, Cornelia A1 - van Osch, Gerjo A1 - Keibl, Claudia A1 - Rieder, Bernhard A1 - Monforte, Xavier A1 - Teuschl, Andreas A1 - Mühleder, Severin A1 - Holnthoner, Wolfgang A1 - Schädl, Barbara A1 - Gahleitner, Christoph A1 - Redl, Heinz A1 - Wolbank, Susanne T1 - Repopulation of an auricular cartilage scaffold, AuriScaff, perforated with an enzyme combination. JF - Acta Biomaterialia KW - Tissue Engineering KW - Decellularization KW - Cartilage Y1 - ER - TY - JOUR A1 - Heimel, Patrick A1 - Swiadek, Nicole V. A1 - Slezak, Paul A1 - Kerbl, Markus A1 - Schneider, Cornelia A1 - Nürnberger, Sylvia A1 - Redl, Heinz A1 - Teuschl, Andreas A1 - Hercher, David T1 - Iodine-Enhanced Micro-CT Imaging of Soft Tissue on the Example of Peripheral Nerve Regeneration JF - Contrast Media & Molecular Imaging KW - µCT KW - Imaging KW - Tissue Engineering KW - Tissue Regeneration Y1 - ER -