TY - JOUR A1 - Maleiner, Babette A1 - Tomasch, Janine A1 - Heher, Philipp A1 - Spadiut, Oliver A1 - Rünzler, Dominik A1 - Fuchs, Christiane T1 - The Importance of Biophysical and Biochemical Stimuli in Dynamic Skeletal Muscle Models. JF - Frontiers in Physiology N2 - Classical approaches to engineer skeletal muscle tissue based on current regenerative and surgical procedures still do not meet the desired outcome for patient applications. Besides the evident need to create functional skeletal muscle tissue for the repair of volumetric muscle defects, there is also growing demand for platforms to study muscle-related diseases, such as muscular dystrophies or sarcopenia. Currently, numerous studies exist that have employed a variety of biomaterials, cell types and strategies for maturation of skeletal muscle tissue in 2D and 3D environments. However, researchers are just at the beginning of understanding the impact of different culture settings and their biochemical (growth factors and chemical changes) and biophysical cues (mechanical properties) on myogenesis. With this review we intend to emphasize the need for new in vitro skeletal muscle (disease) models to better recapitulate important structural and functional aspects of muscle development. We highlight the importance of choosing appropriate system components, e.g., cell and biomaterial type, structural and mechanical matrix properties or culture format, and how understanding their interplay will enable researchers to create optimized platforms to investigate myogenesis in healthy and diseased tissue. Thus, we aim to deliver guidelines for experimental designs to allow estimation of the potential influence of the selected skeletal muscle tissue engineering setup on the myogenic outcome prior to their implementation. Moreover, we offer a workflow to facilitate identifying and selecting different analytical tools to demonstrate the successful creation of functional skeletal muscle tissue. Ultimately, a refinement of existing strategies will lead to further progression in understanding important aspects of muscle diseases, muscle aging and muscle regeneration to improve quality of life of patients and enable the establishment of new treatment options. KW - Bioreactor KW - Muscle KW - Biomaterial Y1 - ER - TY - JOUR A1 - Tomasch, Janine A1 - Maleiner, Babette A1 - Heher, Philipp A1 - Rufin, Manuel A1 - Andriotis, Orestis G. A1 - Thurner, Philipp J. A1 - Redl, Heinz A1 - Fuchs, Christiane A1 - Teuschl-Woller, Andreas H. T1 - Changes in Elastic Moduli of Fibrin Hydrogels Within the Myogenic Range Alter Behavior of Murine C2C12 and Human C25 Myoblasts Differently JF - Froniers in Bioengineering and Biotechnology N2 - Fibrin hydrogels have proven highly suitable scaffold materials for skeletal muscle tissue engineering in the past. Certain parameters of those types of scaffolds, however, greatly affect cellular mechanobiology and therefore the myogenic outcome. The aim of this study was to identify the influence of apparent elastic properties of fibrin scaffolds in 2D and 3D on myoblasts and evaluate if those effects differ between murine and human cells. Therefore, myoblasts were cultured on fibrin-coated multiwell plates (“2D”) or embedded in fibrin hydrogels (“3D”) with different elastic moduli. Firstly, we established an almost linear correlation between hydrogels’ fibrinogen concentrations and apparent elastic moduli in the range of 7.5 mg/ml to 30 mg/ml fibrinogen (corresponds to a range of 7.7–30.9 kPa). The effects of fibrin hydrogel elastic modulus on myoblast proliferation changed depending on culture type (2D vs 3D) with an inhibitory effect at higher fibrinogen concentrations in 3D gels and vice versa in 2D. The opposite effect was evident in differentiating myoblasts as shown by gene expression analysis of myogenesis marker genes and altered myotube morphology. Furthermore, culture in a 3D environment slowed down proliferation compared to 2D, with a significantly more pronounced effect on human myoblasts. Differentiation potential was also substantially impaired upon incorporation into 3D gels in human, but not in murine, myoblasts. With this study, we gained further insight in the influence of apparent elastic modulus and culture type on cellular behavior and myogenic outcome of skeletal muscle tissue engineering approaches. Furthermore, the results highlight the need to adapt parameters of 3D culture setups established for murine cells when applied to human cells. KW - Tissue Engineering KW - Fibrin KW - Hydrogel KW - Biomaterials KW - Cell Culture Y1 - VL - 10 SP - 836520 ER - TY - JOUR A1 - Angelova, Liliya A1 - Daskalova, Albena A1 - Filipov, Emil A1 - Monforte Vila, Xavier A1 - Tomasch, Janine A1 - Avdeev, Georgi A1 - Teuschl-Woller, Andreas Herbert A1 - Buchvarov, Ivan T1 - Optimizing the Surface Structural and Morphological Properties of Silk Thin Films via Ultra-Short Laser Texturing for Creation of Muscle Cell Matrix Model JF - Polymers N2 - Temporary scaffolds that mimic the extracellular matrix's structure and provide a stable substratum for the natural growth of cells are an innovative trend in the field of tissue engineering. The aim of this study is to obtain and design porous 2D fibroin-based cell matrices by femtosecond laser-induced microstructuring for future applications in muscle tissue engineering. Ultra-fast laser treatment is a non-contact method, which generates controlled porosity-the creation of micro/nanostructures on the surface of the biopolymer that can strongly affect cell behavior, while the control over its surface characteristics has the potential of directing the growth of future muscle tissue in the desired direction. The laser structured 2D thin film matrices from silk were characterized by means of SEM, EDX, AFM, FTIR, Micro-Raman, XRD, and 3D-roughness analyses. A WCA evaluation and initial experiments with murine C2C12 myoblasts cells were also performed. The results show that by varying the laser parameters, a different structuring degree can be achieved through the initial lifting and ejection of the material around the area of laser interaction to generate porous channels with varying widths and depths. The proper optimization of the applied laser parameters can significantly improve the bioactive properties of the investigated 2D model of a muscle cell matrix. Keywords: biopolymers; femtosecond laser processing; muscle cell matrix 2D model; muscle tissue engineering; silk fibroin. KW - Tissue Engineering KW - Muscle Cell matrix Model KW - Silk Scaffold KW - Surface Structure Y1 - VL - 2022 IS - 14(13), 2584 ER - TY - GEN A1 - Heher, Philipp A1 - Tomasch, Janine A1 - Maleiner, Babette A1 - Redl, Heinz A1 - Fuchs, Christiane T1 - The Importance of Biomechanical Cues for In Vitro Skeletal Myogenesis KW - In Vitro KW - Myogenesis Y1 - 2018 ER - TY - GEN A1 - Tomasch, Janine T1 - Generation of 3D skeletal muscle-like scaffolds via the application of mechanical stimuli KW - Scaffold KW - Mechanical Stimuli Y1 - 2018 ER - TY - JOUR A1 - Tomasch, Janine A1 - Maleiner, Babette A1 - Hromada, Carina A1 - Szwarc-Hofbauer, Dorota A1 - Teuschl-Woller, Andreas T1 - Cyclic Tensile Stress Induces Skeletal Muscle Hypertrophy and Myonuclear Accretion in a 3D Model JF - Tissue Eng. Part A. N2 - Skeletal muscle is highly adaptive to mechanical stress due to its resident stem cells and the pronounced level of myotube plasticity. Herein, we study the adaptation to mechanical stress and its underlying molecular mechanisms in a tissue-engineered skeletal muscle model. We subjected differentiated 3D skeletal muscle-like constructs to cyclic tensile stress using a custom-made bioreactor system, which resulted in immediate activation of stress-related signal transducers (Erk1/2, p38). Cell cycle re-entry, increased proliferation, and onset of myogenesis indicated subsequent myoblast activation. Furthermore, elevated focal adhesion kinase and β-catenin activity in mechanically stressed constructs suggested increased cell adhesion and migration. After 3 days of mechanical stress, gene expression of the fusogenic markers MyoMaker and MyoMixer, myotube diameter, myonuclear accretion, as well as S6 activation, were significantly increased. Our results highlight that we established a promising tool to study sustained adaptation to mechanical stress in healthy, hypertrophic, or regenerating skeletal muscle. KW - fibrin KW - tissue engineering KW - tensile stress KW - regeneration KW - hypertrophy Y1 - VL - 2023 IS - Mar SP - 257 EP - 268 ER - TY - GEN A1 - Hromada, Carina A1 - Tomasch, Janine A1 - Weihs, Anna A1 - Rünzler, Dominik A1 - Teuschl, Andreas T1 - Engineering of 3D Tissue Constructs Using our Novel MagneTissue Bioreactor as Alternatives to Animal Models KW - Bioreactor KW - Biomaterials Y1 - ER - TY - THES A1 - Tomasch, Janine T1 - Strategies to improve the myogenic outcome of skeletal muscle tissue engineering approaches through optimization of biomaterial properties and mechanical stimuli KW - muscle KW - bioreactor KW - tissue engineering KW - fibrin KW - biomaterial Y1 - ER -