TY - JOUR A1 - Tomasch, Janine A1 - Maleiner, Babette A1 - Heher, Philipp A1 - Rufin, Manuel A1 - Andriotis, Orestis G. A1 - Thurner, Philipp J. A1 - Redl, Heinz A1 - Fuchs, Christiane A1 - Teuschl-Woller, Andreas H. T1 - Changes in Elastic Moduli of Fibrin Hydrogels Within the Myogenic Range Alter Behavior of Murine C2C12 and Human C25 Myoblasts Differently JF - Froniers in Bioengineering and Biotechnology N2 - Fibrin hydrogels have proven highly suitable scaffold materials for skeletal muscle tissue engineering in the past. Certain parameters of those types of scaffolds, however, greatly affect cellular mechanobiology and therefore the myogenic outcome. The aim of this study was to identify the influence of apparent elastic properties of fibrin scaffolds in 2D and 3D on myoblasts and evaluate if those effects differ between murine and human cells. Therefore, myoblasts were cultured on fibrin-coated multiwell plates (“2D”) or embedded in fibrin hydrogels (“3D”) with different elastic moduli. Firstly, we established an almost linear correlation between hydrogels’ fibrinogen concentrations and apparent elastic moduli in the range of 7.5 mg/ml to 30 mg/ml fibrinogen (corresponds to a range of 7.7–30.9 kPa). The effects of fibrin hydrogel elastic modulus on myoblast proliferation changed depending on culture type (2D vs 3D) with an inhibitory effect at higher fibrinogen concentrations in 3D gels and vice versa in 2D. The opposite effect was evident in differentiating myoblasts as shown by gene expression analysis of myogenesis marker genes and altered myotube morphology. Furthermore, culture in a 3D environment slowed down proliferation compared to 2D, with a significantly more pronounced effect on human myoblasts. Differentiation potential was also substantially impaired upon incorporation into 3D gels in human, but not in murine, myoblasts. With this study, we gained further insight in the influence of apparent elastic modulus and culture type on cellular behavior and myogenic outcome of skeletal muscle tissue engineering approaches. Furthermore, the results highlight the need to adapt parameters of 3D culture setups established for murine cells when applied to human cells. KW - Tissue Engineering KW - Fibrin KW - Hydrogel KW - Biomaterials KW - Cell Culture Y1 - VL - 10 SP - 836520 ER - TY - JOUR A1 - Maleiner, Babette A1 - Tomasch, Janine A1 - Heher, Philipp A1 - Spadiut, Oliver A1 - Rünzler, Dominik A1 - Fuchs, Christiane T1 - The Importance of Biophysical and Biochemical Stimuli in Dynamic Skeletal Muscle Models. JF - Frontiers in Physiology N2 - Classical approaches to engineer skeletal muscle tissue based on current regenerative and surgical procedures still do not meet the desired outcome for patient applications. Besides the evident need to create functional skeletal muscle tissue for the repair of volumetric muscle defects, there is also growing demand for platforms to study muscle-related diseases, such as muscular dystrophies or sarcopenia. Currently, numerous studies exist that have employed a variety of biomaterials, cell types and strategies for maturation of skeletal muscle tissue in 2D and 3D environments. However, researchers are just at the beginning of understanding the impact of different culture settings and their biochemical (growth factors and chemical changes) and biophysical cues (mechanical properties) on myogenesis. With this review we intend to emphasize the need for new in vitro skeletal muscle (disease) models to better recapitulate important structural and functional aspects of muscle development. We highlight the importance of choosing appropriate system components, e.g., cell and biomaterial type, structural and mechanical matrix properties or culture format, and how understanding their interplay will enable researchers to create optimized platforms to investigate myogenesis in healthy and diseased tissue. Thus, we aim to deliver guidelines for experimental designs to allow estimation of the potential influence of the selected skeletal muscle tissue engineering setup on the myogenic outcome prior to their implementation. Moreover, we offer a workflow to facilitate identifying and selecting different analytical tools to demonstrate the successful creation of functional skeletal muscle tissue. Ultimately, a refinement of existing strategies will lead to further progression in understanding important aspects of muscle diseases, muscle aging and muscle regeneration to improve quality of life of patients and enable the establishment of new treatment options. KW - Bioreactor KW - Muscle KW - Biomaterial Y1 - ER - TY - GEN A1 - Heher, Philipp A1 - Tomasch, Janine A1 - Maleiner, Babette A1 - Redl, Heinz A1 - Fuchs, Christiane T1 - The Importance of Biomechanical Cues for In Vitro Skeletal Myogenesis KW - In Vitro KW - Myogenesis Y1 - 2018 ER - TY - JOUR A1 - Schuh, Christina A1 - Heher, Philipp A1 - Weihs, Anna A1 - Fuchs, Christiane A1 - Gabriel, Christian A1 - Wolbank, Susanne A1 - Mittermayr, Rainer A1 - Redl, Heinz A1 - Rünzler, Dominik A1 - Teuschl, Andreas T1 - In vitro extracorporeal shock wave treatment enhances stemness and preserves multipotency of rat and human adipose-derived stem cells JF - Journal of Cytotherapy KW - Shockwave Y1 - ER - TY - CHAP A1 - Maleiner, Babette A1 - Heher, Philipp A1 - Teuschl, Andreas A1 - Redl, Heinz A1 - Rünzler, Dominik A1 - Fuchs, Christiane T1 - Generation of aligned skeletal muscle-like tissue based on the application of strain to a 3D fibrin scaffold T2 - Proceedings of PACT "Designer Cells go Clinical" Symposium KW - Tissue Generation KW - Fibrin KW - Scaffold Y1 - 2018 ER - TY - GEN A1 - Maleiner, Babette A1 - Heher, Philipp A1 - Teuschl, Andreas A1 - Redl, Heinz A1 - Rünzler, Dominik A1 - Fuchs, Christiane T1 - Generation of aligned skeletal muscle-like tissue based on the application of strain to a 3D fibrin scaffold KW - Tissue Generation KW - Fibrin KW - Scaffold Y1 - 2018 ER - TY - JOUR A1 - Heher, Philipp A1 - Maleiner, Babette A1 - Prüller, Johanna A1 - Teuschl, Andreas A1 - Kollmitzer, Josef A1 - Monforte Vila, Xavier A1 - Wolbank, Susanne A1 - Redl, Heinz A1 - Rünzler, Dominik A1 - Fuchs, Christiane T1 - A novel bioreactor for the generation of highly aligned 3D skeletal muscle-like constructs through orientation of fibrin via application of static strain JF - Acta Biomaterialia KW - Bioreactor Y1 - ER - TY - GEN A1 - Heher, Philipp A1 - Fuchs, Christiane A1 - Prüller, Johanna A1 - Babette, Maleiner A1 - Rünzler, Dominik A1 - Redl, Heinz T1 - A novel bioreactor for engineering skeletal muscle-like tissue in a strained fibrin scaffold KW - Bioreactor KW - Scaffold KW - Muscle Tissue Y1 - ER - TY - GEN A1 - Teuschl, Andreas A1 - Fuchs, Christiane A1 - Feichtinger, Georg A1 - Heher, Philipp A1 - Heimel, Patrick A1 - Schuh, Christina A1 - Nürnberger, Sylvia A1 - Nau, Thomas A1 - Rünzler, Dominik A1 - Redl, Heinz T1 - Fibrin or Fibroin - Not only the "o" Makes the Difference KW - Fibrin KW - Fibroin Y1 - 2018 ER - TY - JOUR A1 - Schuh, Christina A1 - Heher, Philipp A1 - Weihs, Anna A1 - Asmita, Banerjee A1 - Wolbank, Susanne A1 - Mittermayr, Rainer A1 - Redl, Heinz A1 - Rünzler, Dominik A1 - Teuschl, Andreas T1 - Adipose derived stem cells respond to in vitro extracorporeal shockwave treatment with increased stemness and multipotency JF - New Biotechnology KW - Shockwave Y1 - ER - TY - GEN A1 - Heher, Philipp A1 - Fuchs, Christiane A1 - Prüller, Johanna A1 - Maleiner, Babette A1 - Kollmitzer, Josef A1 - Rünzler, Dominik A1 - Teuschl, Andreas A1 - Wolbank, Susanne A1 - Redl, Heinz T1 - A bioreactor-based 3D culture system for skeletal muscle engineering in fibrin scaffolds KW - Bioreactors KW - Cell Culture KW - Muscle KW - Scaffold Y1 - 2018 ER - TY - JOUR A1 - Simsa, Robin A1 - Padma, Arvind A1 - Heher, Philipp A1 - Hellström, Mats A1 - Teuschl, Andreas A1 - Jenndahl, Lachmi A1 - Bergh, Niklas A1 - Fogelstrand, Per T1 - Systematic in vitro comparison of decellularization protocols for blood vessels. JF - PLoS One KW - Tissue Engineering KW - Decellularization KW - Blood Vessel Y1 - ER -