TY - JOUR A1 - Priglinger, Eleni A1 - Schuh, Christina A1 - Steffenhagen, Carolin A1 - Wurzer, Christoph A1 - Maier, Julia A1 - Nürnberger, Sylvia A1 - Holnthoner, Wolfgang A1 - Fuchs, Christiane A1 - Suessner, Susanne A1 - Rünzler, Dominik A1 - Redl, Heinz A1 - Wolbank, Susanne T1 - Improvement of adipose tissue-derived cells by low-energy extracorporeal shock wave therapy. JF - Cytotherapy N2 - BACKGROUND: Cell-based therapies with autologous adipose tissue-derived cells have shown great potential in several clinical studies in the last decades. The majority of these studies have been using the stromal vascular fraction (SVF), a heterogeneous mixture of fibroblasts, lymphocytes, monocytes/macrophages, endothelial cells, endothelial progenitor cells, pericytes and adipose-derived stromal/stem cells (ASC) among others. Although possible clinical applications of autologous adipose tissue-derived cells are manifold, they are limited by insufficient uniformity in cell identity and regenerative potency. METHODS: In our experimental set-up, low-energy extracorporeal shock wave therapy (ESWT) was performed on freshly obtained human adipose tissue and isolated adipose tissue SVF cells aiming to equalize and enhance stem cell properties and functionality. RESULTS: After ESWT on adipose tissue we could achieve higher cellular adenosine triphosphate (ATP) levels compared with ESWT on the isolated SVF as well as the control. ESWT on adipose tissue resulted in a significantly higher expression of single mesenchymal and vascular marker compared with untreated control. Analysis of SVF protein secretome revealed a significant enhancement in insulin-like growth factor (IGF)-1 and placental growth factor (PLGF) after ESWT on adipose tissue. DISCUSSION: Summarizing we could show that ESWT on adipose tissue enhanced the cellular ATP content and modified the expression of single mesenchymal and vascular marker, and thus potentially provides a more regenerative cell population. Because the effectiveness of autologous cell therapy is dependent on the therapeutic potency of the patient's cells, this technology might raise the number of patients eligible for autologous cell transplantation. KW - Shockwave Therapy KW - Tissue Regeneration KW - Regenerative Medicine Y1 - SP - 1079 EP - 1095 ER - TY - JOUR A1 - Schuh, Christina A1 - Heher, Philipp A1 - Weihs, Anna A1 - Fuchs, Christiane A1 - Gabriel, Christian A1 - Wolbank, Susanne A1 - Mittermayr, Rainer A1 - Redl, Heinz A1 - Rünzler, Dominik A1 - Teuschl, Andreas T1 - In vitro extracorporeal shock wave treatment enhances stemness and preserves multipotency of rat and human adipose-derived stem cells JF - Journal of Cytotherapy KW - Shockwave Y1 - ER - TY - JOUR A1 - Berkovitch, Yulia A1 - Cohen, Talia A1 - Peled, Eli A1 - Schmidhammer, Robert A1 - Hildner, Florian A1 - Teuschl, Andreas A1 - Wolbank, Susanne A1 - Yelin, Dvir A1 - Redl, Heinz A1 - Seliktar, Dror T1 - Hydrogel composition and laser micropatterning to regulate sciatic nerve regeneration. JF - Journal of Tissue Engineering and Regenerative Medicine N2 - Treatment of peripheral nerve injuries has evolved over the past several decades to include the use of sophisticated new materials endowed with trophic and topographical cues that are essential for in vivo nerve fibre regeneration. In this research, we explored the use of an advanced design strategy for peripheral nerve repair, using biological and semi-synthetic hydrogels that enable controlled environmental stimuli to regenerate neurons and glial cells in a rat sciatic nerve resection model. The provisional nerve growth conduits were composed of either natural fibrin or adducts of synthetic polyethylene glycol and fibrinogen or gelatin. A photo-patterning technique was further applied to these 3D hydrogel biomaterials, in the form of laser-ablated microchannels, to provide contact guidance for unidirectional growth following sciatic nerve injury. We tested the regeneration capacity of subcritical nerve gap injuries in rats treated with photo-patterned materials and compared these with injuries treated with unpatterned hydrogels, either stiff or compliant. Among the factors tested were shear modulus, biological composition, and micropatterning of the materials. The microchannel guidance patterns, combined with appropriately matched degradation and stiffness properties of the material, proved most essential for the uniform tissue propagation during the nerve regeneration process. KW - Tissue Engineering KW - Biomaterials KW - Nerve Regeneration Y1 - SP - 1049 EP - 1061 ER - TY - JOUR A1 - Berkovitch, Yulia A1 - Cohen, Talia A1 - Peled, Eli A1 - Schmidhammer, Robert A1 - Hildner, Florian A1 - Teuschl, Andreas A1 - Wolbank, Susanne A1 - Yelin, Dvir A1 - Redl, Heinz A1 - Seliktar, Dror T1 - Hydrogel Composition and Laser Micro-Patterning to Regulate Sciatic Nerve Regeneration JF - Journal of Tissue Engineering and Regenerative Medicine KW - Micro-Patterning KW - Laser KW - Nerve Regeneration Y1 - 2018 VL - 12 IS - 4 ER - TY - JOUR A1 - Schneider, Cornelia A1 - Lehmann, Johannes A1 - van Osch, Gerjo A1 - Hildner, Florian A1 - Teuschl, Andreas A1 - Monforte Vila, Xavier A1 - Miosga, David A1 - Heimel, Patrick A1 - Priglinger, Eleni A1 - Redl, Heinz A1 - Wolbank, Susanne A1 - Nürnberger, Sylvia T1 - Systematic Comparison of Protocols for the Preparation of Human Articular Cartilage for Use as Scaffold Material in Cartilage Tissue Engineering JF - Tissue Eng Part C Methods KW - Cartilage KW - Scaffold Material Y1 - 2018 VL - 22 IS - 12 ER - TY - CHAP A1 - Basoli, Valentina A1 - Chaudry, Sidrah A1 - Cruciani, Sara A1 - Fuchs, Christiane A1 - Rieger, Sabine A1 - Dungel, Peter A1 - Wolbank, Susanne A1 - Ventura, Carlo A1 - Grillari-Voglauer, Regina A1 - Redl, Heinz A1 - Maioli, Margherita T1 - Epigenetic and molecular behavious of stem cells exposed to biophysical stimuli: new insights in regenerative medicine T2 - Proceedings des Seminars zum 40. Jahresjubiläum der Österreichischen Gesellschaft für Chirurgische Forschung KW - Stem Cells KW - Regeneration KW - Biophysical Stimuli Y1 - 2018 ER - TY - GEN A1 - Basoli, Valentina A1 - Chaudry, Sidrah A1 - Cruciani, Gabriele A1 - Fuchs, Christiane A1 - Rieger, Sabine A1 - Dungel, Peter A1 - Wolbank, Susanne A1 - Ventura, Carlo A1 - Grillari-Voglauer, Regina A1 - Redl, Heinz A1 - Maioli, Margherita T1 - Epigenetic and molecular behavious of stem cells exposed to biophysical stimuli: new insights in regenerative medicine KW - Stem Cells KW - Regeneration KW - Biophysical Stimuli Y1 - 2018 ER - TY - JOUR A1 - Heher, Philipp A1 - Maleiner, Babette A1 - Prüller, Johanna A1 - Teuschl, Andreas A1 - Kollmitzer, Josef A1 - Monforte Vila, Xavier A1 - Wolbank, Susanne A1 - Redl, Heinz A1 - Rünzler, Dominik A1 - Fuchs, Christiane T1 - A novel bioreactor for the generation of highly aligned 3D skeletal muscle-like constructs through orientation of fibrin via application of static strain JF - Acta Biomaterialia KW - Bioreactor Y1 - ER - TY - JOUR A1 - Schuh, Christina A1 - Heher, Philipp A1 - Weihs, Anna A1 - Asmita, Banerjee A1 - Wolbank, Susanne A1 - Mittermayr, Rainer A1 - Redl, Heinz A1 - Rünzler, Dominik A1 - Teuschl, Andreas T1 - Adipose derived stem cells respond to in vitro extracorporeal shockwave treatment with increased stemness and multipotency JF - New Biotechnology KW - Shockwave Y1 - ER - TY - GEN A1 - Heher, Philipp A1 - Fuchs, Christiane A1 - Prüller, Johanna A1 - Maleiner, Babette A1 - Kollmitzer, Josef A1 - Rünzler, Dominik A1 - Teuschl, Andreas A1 - Wolbank, Susanne A1 - Redl, Heinz T1 - A bioreactor-based 3D culture system for skeletal muscle engineering in fibrin scaffolds KW - Bioreactors KW - Cell Culture KW - Muscle KW - Scaffold Y1 - 2018 ER - TY - CHAP A1 - Rünzler, Dominik A1 - Knebl, Gerald A1 - Peterbauer, A. A1 - Wolbank, Susanne A1 - Morton, Tatjana J. A1 - Redl, Heinz T1 - Darstellung fluoreszenzmarkierter adulter Stammzellen in drei-dimensionaler Zellkultur mittels Konfokaler Laser Scanning Mikroskopie T2 - Erstes Forschungsforum der österreichischen Fachhochschulen KW - Cells Y1 - 2019 SP - 311 EP - 316 ER - TY - JOUR A1 - Nürnberger, Sylvia A1 - Schneider, Cornelia A1 - van Osch, Gerjo A1 - Keibl, Claudia A1 - Rieder, Bernhard A1 - Monforte, Xavier A1 - Teuschl, Andreas A1 - Mühleder, Severin A1 - Holnthoner, Wolfgang A1 - Schädl, Barbara A1 - Gahleitner, Christoph A1 - Redl, Heinz A1 - Wolbank, Susanne T1 - Repopulation of an auricular cartilage scaffold, AuriScaff, perforated with an enzyme combination. JF - Acta Biomaterialia KW - Tissue Engineering KW - Decellularization KW - Cartilage Y1 - ER - TY - JOUR A1 - Strohmeier, Karin A1 - Hofmann, Martina A1 - Jacak, Jaroslaw A1 - Narzt, Marie-Sophie A1 - Wahlmueller, Marlene A1 - Mairhofer, Mario A1 - Schädl, Barbara A1 - Holnthoner, Wolfgang A1 - Barsch, Martin A1 - Sandhofer, Matthias A1 - Wolbank, Susanne A1 - Priglinger, Eleni T1 - Multi-Level Analysis of Adipose Tissue Reveals the Relevance of Perivascular Subpopulations and an Increased Endothelial Permeability in Early-Stage Lipedema JF - Biomedicines N2 - Lipedema is a chronic, progressive disease of adipose tissue with unknown etiology. Based on the relevance of the stromal vascular fraction (SVF) cell population in lipedema, we performed a thorough characterization of subcutaneous adipose tissue, SVF isolated thereof and the sorted populations of endothelial cells (EC), pericytes and cultured adipose-derived stromal/stem cells (ASC) of early-stage lipedema patients. We employed histological and gene expression analysis and investigated the endothelial barrier by immunofluorescence and analysis of endothelial permeability in vitro. Although there were no significant differences in histological stainings, we found altered gene expression of factors relevant for local estrogen metabolism (aromatase), preadipocyte commitment (ZNF423) and immune cell infiltration (CD11c) in lipedema on the tissue level, as well as in distinct cellular subpopulations. Machine learning analysis of immunofluorescence images of CD31 and ZO-1 revealed a morphological difference in the cellular junctions of EC cultures derived from healthy and lipedema individuals. Furthermore, the secretome of lipedema-derived SVF cells was sufficient to significantly increase leakiness of healthy human primary EC, which was also reflected by decreased mRNA expression of VE-cadherin. Here, we showed for the first time that the secretome of SVF cells creates an environment that triggers endothelial barrier dysfunction in early-stage lipedema. Moreover, since alterations in gene expression were detected on the cellular and/or tissue level, the choice of sample material is of high importance in elucidating this complex disease. KW - Tissue Engineering KW - Adipose Tissue KW - Lipedema KW - Endothelial Cells Y1 - VL - 2022 IS - 10(5) SP - 1163 ER -