TY - JOUR A1 - Berkovitch, Yulia A1 - Cohen, Talia A1 - Peled, Eli A1 - Schmidhammer, Robert A1 - Hildner, Florian A1 - Teuschl, Andreas A1 - Wolbank, Susanne A1 - Yelin, Dvir A1 - Redl, Heinz A1 - Seliktar, Dror T1 - Hydrogel composition and laser micropatterning to regulate sciatic nerve regeneration. JF - Journal of Tissue Engineering and Regenerative Medicine N2 - Treatment of peripheral nerve injuries has evolved over the past several decades to include the use of sophisticated new materials endowed with trophic and topographical cues that are essential for in vivo nerve fibre regeneration. In this research, we explored the use of an advanced design strategy for peripheral nerve repair, using biological and semi-synthetic hydrogels that enable controlled environmental stimuli to regenerate neurons and glial cells in a rat sciatic nerve resection model. The provisional nerve growth conduits were composed of either natural fibrin or adducts of synthetic polyethylene glycol and fibrinogen or gelatin. A photo-patterning technique was further applied to these 3D hydrogel biomaterials, in the form of laser-ablated microchannels, to provide contact guidance for unidirectional growth following sciatic nerve injury. We tested the regeneration capacity of subcritical nerve gap injuries in rats treated with photo-patterned materials and compared these with injuries treated with unpatterned hydrogels, either stiff or compliant. Among the factors tested were shear modulus, biological composition, and micropatterning of the materials. The microchannel guidance patterns, combined with appropriately matched degradation and stiffness properties of the material, proved most essential for the uniform tissue propagation during the nerve regeneration process. KW - Tissue Engineering KW - Biomaterials KW - Nerve Regeneration Y1 - SP - 1049 EP - 1061 ER - TY - JOUR A1 - Nürnberger, Sylvia A1 - Schneider, Cornelia A1 - van Osch, Gerjo A1 - Keibl, Claudia A1 - Rieder, Bernhard A1 - Monforte, Xavier A1 - Teuschl, Andreas A1 - Mühleder, Severin A1 - Holnthoner, Wolfgang A1 - Schädl, Barbara A1 - Gahleitner, Christoph A1 - Redl, Heinz A1 - Wolbank, Susanne T1 - Repopulation of an auricular cartilage scaffold, AuriScaff, perforated with an enzyme combination. JF - Acta Biomaterialia KW - Tissue Engineering KW - Decellularization KW - Cartilage Y1 - ER - TY - JOUR A1 - Strohmeier, Karin A1 - Hofmann, Martina A1 - Jacak, Jaroslaw A1 - Narzt, Marie-Sophie A1 - Wahlmueller, Marlene A1 - Mairhofer, Mario A1 - Schädl, Barbara A1 - Holnthoner, Wolfgang A1 - Barsch, Martin A1 - Sandhofer, Matthias A1 - Wolbank, Susanne A1 - Priglinger, Eleni T1 - Multi-Level Analysis of Adipose Tissue Reveals the Relevance of Perivascular Subpopulations and an Increased Endothelial Permeability in Early-Stage Lipedema JF - Biomedicines N2 - Lipedema is a chronic, progressive disease of adipose tissue with unknown etiology. Based on the relevance of the stromal vascular fraction (SVF) cell population in lipedema, we performed a thorough characterization of subcutaneous adipose tissue, SVF isolated thereof and the sorted populations of endothelial cells (EC), pericytes and cultured adipose-derived stromal/stem cells (ASC) of early-stage lipedema patients. We employed histological and gene expression analysis and investigated the endothelial barrier by immunofluorescence and analysis of endothelial permeability in vitro. Although there were no significant differences in histological stainings, we found altered gene expression of factors relevant for local estrogen metabolism (aromatase), preadipocyte commitment (ZNF423) and immune cell infiltration (CD11c) in lipedema on the tissue level, as well as in distinct cellular subpopulations. Machine learning analysis of immunofluorescence images of CD31 and ZO-1 revealed a morphological difference in the cellular junctions of EC cultures derived from healthy and lipedema individuals. Furthermore, the secretome of lipedema-derived SVF cells was sufficient to significantly increase leakiness of healthy human primary EC, which was also reflected by decreased mRNA expression of VE-cadherin. Here, we showed for the first time that the secretome of SVF cells creates an environment that triggers endothelial barrier dysfunction in early-stage lipedema. Moreover, since alterations in gene expression were detected on the cellular and/or tissue level, the choice of sample material is of high importance in elucidating this complex disease. KW - Tissue Engineering KW - Adipose Tissue KW - Lipedema KW - Endothelial Cells Y1 - VL - 2022 IS - 10(5) SP - 1163 ER -