TY - JOUR A1 - Maleiner, Babette A1 - Tomasch, Janine A1 - Heher, Philipp A1 - Spadiut, Oliver A1 - Rünzler, Dominik A1 - Fuchs, Christiane T1 - The Importance of Biophysical and Biochemical Stimuli in Dynamic Skeletal Muscle Models. JF - Frontiers in Physiology N2 - Classical approaches to engineer skeletal muscle tissue based on current regenerative and surgical procedures still do not meet the desired outcome for patient applications. Besides the evident need to create functional skeletal muscle tissue for the repair of volumetric muscle defects, there is also growing demand for platforms to study muscle-related diseases, such as muscular dystrophies or sarcopenia. Currently, numerous studies exist that have employed a variety of biomaterials, cell types and strategies for maturation of skeletal muscle tissue in 2D and 3D environments. However, researchers are just at the beginning of understanding the impact of different culture settings and their biochemical (growth factors and chemical changes) and biophysical cues (mechanical properties) on myogenesis. With this review we intend to emphasize the need for new in vitro skeletal muscle (disease) models to better recapitulate important structural and functional aspects of muscle development. We highlight the importance of choosing appropriate system components, e.g., cell and biomaterial type, structural and mechanical matrix properties or culture format, and how understanding their interplay will enable researchers to create optimized platforms to investigate myogenesis in healthy and diseased tissue. Thus, we aim to deliver guidelines for experimental designs to allow estimation of the potential influence of the selected skeletal muscle tissue engineering setup on the myogenic outcome prior to their implementation. Moreover, we offer a workflow to facilitate identifying and selecting different analytical tools to demonstrate the successful creation of functional skeletal muscle tissue. Ultimately, a refinement of existing strategies will lead to further progression in understanding important aspects of muscle diseases, muscle aging and muscle regeneration to improve quality of life of patients and enable the establishment of new treatment options. KW - Bioreactor KW - Muscle KW - Biomaterial Y1 - ER - TY - JOUR A1 - Feichtinger, Xaver A1 - Monforte, Xavier A1 - Keibl, Claudia A1 - Hercher, David A1 - Schanda, Jakob A1 - Teuschl, Andreas A1 - Muschitz, Christian A1 - Redl, Heinz A1 - Fialka, Christian A1 - Mittermayr, Rainer T1 - Substantial Biomechanical Improvement by Extracorporeal Shockwave Therapy After Surgical Repair of Rodent Chronic Rotator Cuff Tears. JF - American Journal of Sports Medicine KW - Shockwave Therapy KW - Tissue Engineering KW - Regeneration KW - Surgery Y1 - ER - TY - JOUR A1 - Rieder, Bernhard A1 - Weihs, Anna A1 - Weidinger, Adelheid A1 - Sczwarc, Dorota A1 - Nürnberger, Sylvia A1 - Redl, Heinz A1 - Rünzler, Dominik A1 - Huber-Gries, Carina A1 - Teuschl, Andreas T1 - Hydrostatic pressure-generated reactive oxygen species induce osteoarthritic conditions in cartilage pellet cultures JF - Scientific Reports KW - Bioreactor KW - Osteoarthritis KW - Cartilage KW - Reactive oxygen species Y1 - ER - TY - JOUR A1 - Priglinger, Eleni A1 - Schuh, Christina A1 - Steffenhagen, Carolin A1 - Wurzer, Christoph A1 - Maier, Julia A1 - Nürnberger, Sylvia A1 - Holnthoner, Wolfgang A1 - Fuchs, Christiane A1 - Suessner, Susanne A1 - Rünzler, Dominik A1 - Redl, Heinz A1 - Wolbank, Susanne T1 - Improvement of adipose tissue-derived cells by low-energy extracorporeal shock wave therapy. JF - Cytotherapy N2 - BACKGROUND: Cell-based therapies with autologous adipose tissue-derived cells have shown great potential in several clinical studies in the last decades. The majority of these studies have been using the stromal vascular fraction (SVF), a heterogeneous mixture of fibroblasts, lymphocytes, monocytes/macrophages, endothelial cells, endothelial progenitor cells, pericytes and adipose-derived stromal/stem cells (ASC) among others. Although possible clinical applications of autologous adipose tissue-derived cells are manifold, they are limited by insufficient uniformity in cell identity and regenerative potency. METHODS: In our experimental set-up, low-energy extracorporeal shock wave therapy (ESWT) was performed on freshly obtained human adipose tissue and isolated adipose tissue SVF cells aiming to equalize and enhance stem cell properties and functionality. RESULTS: After ESWT on adipose tissue we could achieve higher cellular adenosine triphosphate (ATP) levels compared with ESWT on the isolated SVF as well as the control. ESWT on adipose tissue resulted in a significantly higher expression of single mesenchymal and vascular marker compared with untreated control. Analysis of SVF protein secretome revealed a significant enhancement in insulin-like growth factor (IGF)-1 and placental growth factor (PLGF) after ESWT on adipose tissue. DISCUSSION: Summarizing we could show that ESWT on adipose tissue enhanced the cellular ATP content and modified the expression of single mesenchymal and vascular marker, and thus potentially provides a more regenerative cell population. Because the effectiveness of autologous cell therapy is dependent on the therapeutic potency of the patient's cells, this technology might raise the number of patients eligible for autologous cell transplantation. KW - Shockwave Therapy KW - Tissue Regeneration KW - Regenerative Medicine Y1 - SP - 1079 EP - 1095 ER -