TY - GEN A1 - Teuschl, Andreas A1 - Fuchs, Christiane T1 - Bioreactors in Musculoskeletal Tissue Engineering KW - Bioreactor KW - Tissue Engineering Y1 - ER - TY - JOUR A1 - Tomasch, Janine A1 - Maleiner, Babette A1 - Heher, Philipp A1 - Rufin, Manuel A1 - Andriotis, Orestis G. A1 - Thurner, Philipp J. A1 - Redl, Heinz A1 - Fuchs, Christiane A1 - Teuschl-Woller, Andreas H. T1 - Changes in Elastic Moduli of Fibrin Hydrogels Within the Myogenic Range Alter Behavior of Murine C2C12 and Human C25 Myoblasts Differently JF - Froniers in Bioengineering and Biotechnology N2 - Fibrin hydrogels have proven highly suitable scaffold materials for skeletal muscle tissue engineering in the past. Certain parameters of those types of scaffolds, however, greatly affect cellular mechanobiology and therefore the myogenic outcome. The aim of this study was to identify the influence of apparent elastic properties of fibrin scaffolds in 2D and 3D on myoblasts and evaluate if those effects differ between murine and human cells. Therefore, myoblasts were cultured on fibrin-coated multiwell plates (“2D”) or embedded in fibrin hydrogels (“3D”) with different elastic moduli. Firstly, we established an almost linear correlation between hydrogels’ fibrinogen concentrations and apparent elastic moduli in the range of 7.5 mg/ml to 30 mg/ml fibrinogen (corresponds to a range of 7.7–30.9 kPa). The effects of fibrin hydrogel elastic modulus on myoblast proliferation changed depending on culture type (2D vs 3D) with an inhibitory effect at higher fibrinogen concentrations in 3D gels and vice versa in 2D. The opposite effect was evident in differentiating myoblasts as shown by gene expression analysis of myogenesis marker genes and altered myotube morphology. Furthermore, culture in a 3D environment slowed down proliferation compared to 2D, with a significantly more pronounced effect on human myoblasts. Differentiation potential was also substantially impaired upon incorporation into 3D gels in human, but not in murine, myoblasts. With this study, we gained further insight in the influence of apparent elastic modulus and culture type on cellular behavior and myogenic outcome of skeletal muscle tissue engineering approaches. Furthermore, the results highlight the need to adapt parameters of 3D culture setups established for murine cells when applied to human cells. KW - Tissue Engineering KW - Fibrin KW - Hydrogel KW - Biomaterials KW - Cell Culture Y1 - VL - 10 SP - 836520 ER - TY - JOUR A1 - Angelova, Liliya A1 - Daskalova, Albena A1 - Filipov, Emil A1 - Monforte Vila, Xavier A1 - Tomasch, Janine A1 - Avdeev, Georgi A1 - Teuschl-Woller, Andreas Herbert A1 - Buchvarov, Ivan T1 - Optimizing the Surface Structural and Morphological Properties of Silk Thin Films via Ultra-Short Laser Texturing for Creation of Muscle Cell Matrix Model JF - Polymers N2 - Temporary scaffolds that mimic the extracellular matrix's structure and provide a stable substratum for the natural growth of cells are an innovative trend in the field of tissue engineering. The aim of this study is to obtain and design porous 2D fibroin-based cell matrices by femtosecond laser-induced microstructuring for future applications in muscle tissue engineering. Ultra-fast laser treatment is a non-contact method, which generates controlled porosity-the creation of micro/nanostructures on the surface of the biopolymer that can strongly affect cell behavior, while the control over its surface characteristics has the potential of directing the growth of future muscle tissue in the desired direction. The laser structured 2D thin film matrices from silk were characterized by means of SEM, EDX, AFM, FTIR, Micro-Raman, XRD, and 3D-roughness analyses. A WCA evaluation and initial experiments with murine C2C12 myoblasts cells were also performed. The results show that by varying the laser parameters, a different structuring degree can be achieved through the initial lifting and ejection of the material around the area of laser interaction to generate porous channels with varying widths and depths. The proper optimization of the applied laser parameters can significantly improve the bioactive properties of the investigated 2D model of a muscle cell matrix. Keywords: biopolymers; femtosecond laser processing; muscle cell matrix 2D model; muscle tissue engineering; silk fibroin. KW - Tissue Engineering KW - Muscle Cell matrix Model KW - Silk Scaffold KW - Surface Structure Y1 - VL - 2022 IS - 14(13), 2584 ER - TY - JOUR A1 - Purtscher, Michaela A1 - Rothbauer, Mario A1 - Kratz, Sebastian Rudi Adam A1 - Bailey, Andrew A1 - Lieberzeit, Peter A1 - Ertl, Peter T1 - A microfluidic impedance-based extended infectivity assay: combining retroviral amplification and cytopathic effect monitoring on a single lab-on-a-chip platform JF - Lab on a Chip N2 - Detection, quantification and monitoring of virus – host cell interactions are of great importance when evaluating the safety of pharmaceutical products. With the wide usage of viral based vector systems in combination with mammalian cell lines for the production of biopharmaceuticals, the presence of replication competent viral particles needs to be avoided and potential hazards carefully assessed. Consequently, regulatory agencies recommend viral clearance studies using plaque assays or TCID50 assays to evaluate the efficiency of the production process in removing viruses. While plaque assays provide reliable information on the presence of viral contaminations, they are still tedious to perform and can take up to two weeks to finish. To overcome some of these limitations, we have automated, miniaturized and integrated the dual cell culture bioassay into a common lab-on-a-chip platform containing embedded electrical sensor arrays to enrich and detect infectious viruses. Results of our microfluidic single step assay show that a significant reduction in assay time down to 3 to 4 days can be achieved using simultaneous cell-based viral amplification, release and detection of cytopathic effects in a target cell line. We further demonstrate the enhancing effect of continuous fluid flow on infection of PG-4 reporter cells by newly formed and highly active virions by M. dunni cells, thus pointing to the importance of physical relevant viral–cell interactions. KW - Tissue Engineering KW - Microfluidics KW - Lab on Chip Y1 - 2021 VL - 2021 IS - Issue 7 SP - 1364 EP - 1372 ER - TY - JOUR A1 - Zupkovitz, Gordin A1 - Kabiljo, Julijan A1 - Kothmayer, Michael A1 - Schlick, Katharina A1 - Schöfer, Christian A1 - Lagger, Sabine A1 - Pusch, Oliver T1 - Analysis of Methylation Dynamics Reveals a Tissue-Specific, Age-Dependent Decline in 5-Methylcytosine Within the Genome of the Vertebrate Aging Model Nothobranchius furzeri. JF - Frontiers in Molecular Biosciences N2 - Erosion of the epigenetic DNA methylation landscape is a widely recognized hallmark of aging. Emerging advances in high throughput sequencing techniques, in particular DNA methylation data analysis, have resulted in the establishment of precise human and murine age prediction tools. In vertebrates, methylation of cytosine at the C5 position of CpG dinucleotides is executed by DNA methyltransferases (DNMTs) whereas the process of enzymatic demethylation is highly dependent on the activity of the ten-eleven translocation methylcytosine dioxygenase (TET) family of enzymes. Here, we report the identification of the key players constituting the DNA methylation machinery in the short-lived teleost aging model Nothobranchius furzeri. We present a comprehensive spatio-temporal expression profile of the methylation-associated enzymes from embryogenesis into late adulthood, thereby covering the complete killifish life cycle. Data mining of the N. furzeri genome produced five dnmt gene family orthologues corresponding to the mammalian DNMTs (DNMT1, 2, 3A, and 3B). Comparable to other teleost species, N. furzeri harbors multiple genomic copies of the de novo DNA methylation subfamily. A related search for the DNMT1 recruitment factor UHRF1 and TET family members resulted in the identification of N. furzeri uhrf1, tet1, tet2, and tet3. Phylogenetic analysis revealed high cross-species similarity on the amino acid level of all individual dnmts, tets, and uhrf1, emphasizing a high degree of functional conservation. During early killifish development all analyzed dnmts and tets showed a similar expression profile characterized by a strong increase in transcript levels after fertilization, peaking either at embryonic day 6 or at the black eye stage of embryonic development. In adult N. furzeri, DNA methylation regulating enzymes showed a ubiquitous tissue distribution. Specifically, we observed an age-dependent downregulation of dnmts, and to some extent uhrf1, which correlated with a significant decrease in global DNA methylation levels in the aging killifish liver and muscle. The age-dependent DNA methylation profile and spatio-temporal expression characteristics of its enzymatic machinery reported here may serve as an essential platform for the identification of an epigenetic aging clock in the new vertebrate model system N. furzeri. KW - Tissue Engineering KW - Killifish KW - Aging Model Y1 - VL - 8 IS - 627143 ER - TY - JOUR A1 - Deininger, Christian A1 - Wagner, Andrea A1 - Heimel, Patrick A1 - Salzer, Elias A1 - Monforte Vila, Xavier A1 - Weißenbacher, Nadja A1 - Grillari, Johannes A1 - Redl, Heinz A1 - Wichlas, Florian A1 - Freude, Thomas A1 - Tempfer, Herbert A1 - Teuschl-Woller, Andreas A1 - Traweger, Andreas T1 - Enhanced BMP-2-Mediated Bone Repair Using an Anisotropic Silk Fibroin Scaffold Coated with Bone-like Apatite JF - Int. J. Mol. Sci. N2 - The repair of large bone defects remains challenging and often requires graft material due to limited availability of autologous bone. In clinical settings, collagen sponges loaded with excessive amounts of bone morphogenetic protein 2 (rhBMP-2) are occasionally used for the treatment of bone non-unions, increasing the risk of adverse events. Therefore, strategies to reduce rhBMP-2 dosage are desirable. Silk scaffolds show great promise due to their favorable biocompatibility and their utility for various biofabrication methods. For this study, we generated silk scaffolds with axially aligned pores, which were subsequently treated with 10× simulated body fluid (SBF) to generate an apatitic calcium phosphate coating. Using a rat femoral critical sized defect model (CSD) we evaluated if the resulting scaffold allows the reduction of BMP-2 dosage to promote efficient bone repair by providing appropriate guidance cues. Highly porous, anisotropic silk scaffolds were produced, demonstrating good cytocompatibility in vitro and treatment with 10× SBF resulted in efficient surface coating. In vivo, the coated silk scaffolds loaded with a low dose of rhBMP-2 demonstrated significantly improved bone regeneration when compared to the unmineralized scaffold. Overall, our findings show that this simple and cost-efficient technique yields scaffolds that enhance rhBMP-2 mediated bone healing. KW - Tissue Engineering KW - Biomaterials KW - silk scaffold KW - bone regeneration KW - pseudoarthrosis Y1 - VL - 23 IS - 1 / 283 ER - TY - JOUR A1 - Hackethal, Johannes A1 - Dungel, Peter A1 - Teuschl, Andreas Herbert T1 - Frequently Used Strategies to Isolate Extracellular Matrix Proteins from Human Placenta and Adipose Tissue JF - Tissue Engineering Part C: Methods N2 - The natural extracellular matrix (ECM) provides the optimal environment for cells. Many enzymatic or non-enzymatic based strategies to extract ECM proteins from tissues were published over the past years. However, every single isolation strategy reported so far is associated with specific bottlenecks. In this study, frequently used strategies to isolate ECM from human placenta or adipose tissue using Tris-, serum-, or pepsin-based buffers were compared. The resulting ECM proteins were biochemically characterized by analysis of cellular remnants using Hoechst DNA staining, glycosaminoglycan (GAG) content by dimethylmethylene blue, visualization of protein bands using sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis combined with amino acid quantification, and assessment of the proangiogenic profile using an angiogenesis array. Tris-NaCl-extracted ECM proteins showed a high heterogenic degree of extracted proteins, bioactive growth factors, and GAGs, but no collagen-I. Active serum-extracted ECM showed significant lower DNA remnants when compared with the Tris-NaCl isolation strategy. Pepsin-extracted ECM was rich in collagen-I and low amounts of remaining bioactive growth factors. This strategy was most effective to reduce DNA amounts when compared with the other isolation strategies. Pepsin-extracted ECM from both tissues easily gelled at 37°C, whereas the other extracted ECM strategies did not gel at 37°C (Tris-NaCl: liquid; serum: sponge). All relevant characteristics (DNA residues, ECM diversity and bioactivity, shape) of the extracted ECM proteins highly depend on its isolation strategy and could still be optimized. Impact statement The natural human extracellular matrix (ECM) is the ideal cell niche. Various strategies were reported to isolate human ECM components from various sources. In this article, we compared frequently used methods and compared their characteristics (DNA remnants, glycosaminoglycan content, sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, amino acid quantification, angiogenesis array, and gel formation). We conclude that more research is still necessary to optimize current isolation approaches for in vitro or in vivo applications of human ECM. KW - Tissue Engineering KW - Biomaterials KW - Adipose Tissue KW - extracellular matrix KW - human placenta Y1 - VL - 27 IS - 12 SP - 649 EP - 660 ER - TY - JOUR A1 - Khimich, Margarita A. A1 - Prosolov, Konstantin A. A1 - Mishurova, Tatiana A1 - Evsevleev, Sergej A1 - Monforte, Xavier A1 - Teuschl, Andreas H. A1 - Slezak, Paul A1 - Ibragimov, Egor A. A1 - Saprykin, Alexander A. A1 - Kovalevskaya, Zhanna G. A1 - Dmitriev, Andrey I. A1 - Bruno, Giovanni A1 - Sharkeev, Yurii P. T1 - Advances in Laser Additive Manufacturing of Ti-Nb Alloys: From Nanostructured Powders to Bulk Objects JF - Nanomaterials (Basel) N2 - The additive manufacturing of low elastic modulus alloys that have a certain level of porosity for biomedical needs is a growing area of research. Here, we show the results of manufacturing of porous and dense samples by a laser powder bed fusion (LPBF) of Ti-Nb alloy, using two distinctive fusion strategies. The nanostructured Ti-Nb alloy powders were produced by mechanical alloying and have a nanostructured state with nanosized grains up to 90 nm. The manufactured porous samples have pronounced open porosity and advanced roughness, contrary to dense samples with a relatively smooth surface profile. The structure of both types of samples after LPBF is formed by uniaxial grains having micro- and nanosized features. The inner structure of the porous samples is comprised of an open interconnected system of pores. The volume fraction of isolated porosity is 2 vol. % and the total porosity is 20 vol. %. Cell viability was assessed in vitro for 3 and 7 days using the MG63 cell line. With longer culture periods, cells showed an increased cell density over the entire surface of a porous Ti-Nb sample. Both types of samples are not cytotoxic and could be used for further in vivo studies. KW - Tissue Engineering KW - Biomaterials KW - Laser Additive Manufacturing KW - Bulk Objects Y1 - VL - 11 IS - 5 / 1159 ER - TY - JOUR A1 - Farokhi, Maryam A1 - Aleemardani, Mina A1 - Solouk, Atefeh A1 - Mirzadeh, Hamid A1 - Teuschl, Andreas Herbert A1 - Redl, Heinz T1 - Crosslinking strategies for silk fibroin hydrogels: promising biomedical materials JF - Biomedical Materials N2 - Due to their strong biomimetic potential, silk fibroin (SF) hydrogels are impressive candidates for tissue engineering, due to their tunable mechanical properties, biocompatibility, low immunotoxicity, controllable biodegradability, and a remarkable capacity for biomaterial modification and the realization of a specific molecular structure. The fundamental chemical and physical structure of SF allows its structure to be altered using various crosslinking strategies. The established crosslinking methods enable the formation of three-dimensional (3D) networks under physiological conditions. There are different chemical and physical crosslinking mechanisms available for the generation of SF hydrogels (SFHs). These methods, either chemical or physical, change the structure of SF and improve its mechanical stability, although each method has its advantages and disadvantages. While chemical crosslinking agents guarantee the mechanical strength of SFH through the generation of covalent bonds, they could cause some toxicity, and their usage is not compatible with a cell-friendly technology. On the other hand, physical crosslinking approaches have been implemented in the absence of chemical solvents by the induction of β-sheet conformation in the SF structure. Unfortunately, it is not easy to control the shape and properties of SFHs when using this method. The current review discusses the different crosslinking mechanisms of SFH in detail, in order to support the development of engineered SFHs for biomedical applications. KW - Tissue Engineering KW - hydrogels KW - Biomaterials KW - silk fibroin Y1 - VL - 16 IS - 2 SP - 022004 ER - TY - JOUR A1 - Schanda, Jakob A1 - Keibl, Claudia A1 - Heimel, Patrick A1 - Monforte, Xavier A1 - Feichtinger, Xaver A1 - Teuschl, Andreas A1 - Baierl, Andreas A1 - Muschitz, Christian A1 - Redl, Heinz A1 - Fialka, Christian A1 - Mittermayr, Rainer T1 - Zoledronic Acid Substantially Improves Bone Microarchitecture and Biomechanical Properties After Rotator Cuff Repair in a Rodent Chronic Defect Model JF - Am J Sports Med N2 - Background: Bone mineral density at the humeral head is reduced in patients with chronic rotator cuff tears. Bone loss in the humeral head is associated with repair failure after rotator cuff reconstruction. Bisphosphonates (eg, zoledronic acid) increase bone mineral density. Hypothesis: Zoledronic acid improves bone mineral density of the humeral head and biomechanical properties of the enthesis after reconstruction of chronic rotator cuff tears in rats. Study design: Controlled laboratory study. Methods: A total of 32 male Sprague-Dawley rats underwent unilateral (left) supraspinatus tenotomy with delayed transosseous rotator cuff reconstruction after 3 weeks. All rats were sacrificed 8 weeks after rotator cuff repair. Animals were randomly assigned to 1 of 2 groups. At 1 day after rotator cuff reconstruction, the intervention group was treated with a single subcutaneous dose of zoledronic acid at 100 µg/kg bodyweight, and the control group received 1 mL of subcutaneous saline solution. In 12 animals of each group, micro-computed tomography scans of both shoulders were performed as well as biomechanical testing of the supraspinatus enthesis of both sides. In 4 animals of each group, histological analyses were conducted. Results: In the intervention group, bone volume fraction (bone volume/total volume [BV/TV]) of the operated side was higher at the lateral humeral head (P = .005) and the medial humeral head (P = .010) compared with the control group. Trabecular number on the operated side was higher at the lateral humeral head (P = .004) and the medial humeral head (P = .001) in the intervention group. Maximum load to failure rates on the operated side were higher in the intervention group (P < .001). Cortical thickness positively correlated with higher maximum load to failure rates in the intervention group (r = 0.69; P = .026). Histological assessment revealed increased bone formation in the intervention group. Conclusion: Single-dose therapy of zoledronic acid provided an improvement of bone microarchitecture at the humeral head as well as an increase of maximum load to failure rates after transosseous reconstruction of chronic rotator cuff lesions in rats. Clinical relevance: Zoledronic acid improves bone microarchitecture as well as biomechanical properties after reconstruction of chronic rotator cuff tears in rodents. These results need to be verified in clinical investigations. KW - Tissue Engineering KW - Rotator Cuff Tears Y1 - VL - 2020 Jul IS - 48 (9) SP - 2151 EP - 2160 ER - TY - JOUR A1 - Bachmann, Barbara A1 - Spitz, Sarah A1 - Schädl, Barbara A1 - Teuschl, Andreas A1 - Redl, Heinz A1 - Nürnberger, Sylvia A1 - Ertl, Peter T1 - Stiffness Matters: Fine-Tuned Hydrogel Elasticity Alters Chondrogenic Redifferentiation JF - Froniers in Bioengineering and Biotechnology N2 - Biomechanical cues such as shear stress, stretching, compression, and matrix elasticity are vital in the establishment of next generation physiological in vitro tissue models. Matrix elasticity, for instance, is known to guide stem cell differentiation, influence healing processes and modulate extracellular matrix (ECM) deposition needed for tissue development and maintenance. To better understand the biomechanical effect of matrix elasticity on the formation of articular cartilage analogs in vitro, this study aims at assessing the redifferentiation capacity of primary human chondrocytes in three different hydrogel matrices of predefined matrix elasticities. The hydrogel elasticities were chosen to represent a broad spectrum of tissue stiffness ranging from very soft tissues with a Young's modulus of 1 kPa up to elasticities of 30 kPa, representative of the perichondral-space. In addition, the interplay of matrix elasticity and transforming growth factor beta-3 (TGF-β3) on the redifferentiation of primary human articular chondrocytes was studied by analyzing both qualitative (viability, morphology, histology) and quantitative (RT-qPCR, sGAG, DNA) parameters, crucial to the chondrotypic phenotype. Results show that fibrin hydrogels of 30 kPa Young's modulus best guide chondrocyte redifferentiation resulting in a native-like morphology as well as induces the synthesis of physiologic ECM constituents such as glycosaminoglycans (sGAG) and collagen type II. This comprehensive study sheds light onto the mechanobiological impact of matrix elasticity on formation and maintenance of articular cartilage and thus represents a major step toward meeting the need for advanced in vitro tissue models to study both re- and degeneration of articular cartilage. KW - Tissue Engineering KW - Chondrogenic Redifferentiation KW - Biomaterials Y1 - 2021 VL - 2020 IS - 8 SP - 373 ER - TY - JOUR A1 - Ziadlou, Reihane A1 - Rotman, Stijn A1 - Teuschl, Andreas A1 - Salzer, Elias A1 - Barbero, Andrea A1 - Martin, Ivan A1 - Alini, Mauro A1 - Eglin, David A1 - Grad, Sibylle T1 - Optimization of hyaluronic acid-tyramine/silk-fibroin composite hydrogels for cartilage tissue engineering and delivery of anti-inflammatory and anabolic drugs JF - Materials Science and Engineering: C N2 - Injury of articular cartilage leads to an imbalance in tissue homeostasis, and due to the poor self-healing capacity of cartilage the affected tissue often exhibits osteoarthritic changes. In recent years, injectable and highly tunable composite hydrogels for cartilage tissue engineering and drug delivery have been introduced as a desirable alternative to invasive treatments. In this study, we aimed to formulate injectable hydrogels for drug delivery and cartilage tissue engineering by combining different concentrations of hyaluronic acid-tyramine (HA-Tyr) with regenerated silk-fibroin (SF) solutions. Upon enzymatic crosslinking, the gelation and mechanical properties were characterized over time. To evaluate the effect of the hydrogel compositions and properties on extracellular matrix (ECM) deposition, bovine chondrocytes were embedded in enzymatically crosslinked HA-Tyr/SF composites (in further work abbreviated as HA/SF) or HA-Tyr hydrogels. We demonstrated that all hydrogel formulations were cytocompatible and could promote the expression of cartilage matrix proteins allowing chondrocytes to produce ECM, while the most prominent chondrogenic effects were observed in hydrogels with HA20/SF80 polymeric ratios. Unconfined mechanical testing showed that the compressive modulus for HA20/SF80 chondrocyte-laden constructs was increased almost 10-fold over 28 days of culture in chondrogenic medium which confirmed the superior production of ECM in this hydrogel compared to other hydrogels in this study. Furthermore, in hydrogels loaded with anabolic and anti-inflammatory drugs, HA20/SF80 hydrogel showed the longest and the most sustained release profile over time which is desirable for the long treatment duration typically necessary for osteoarthritic joints. In conclusion, HA20/SF80 hydrogel was successfully established as a suitable injectable biomaterial for cartilage tissue engineering and drug delivery applications. KW - Tissue Engineering KW - Cartilage KW - Mechanical Testing KW - Biomaterials KW - Chondrocytes Y1 - VL - 120 IS - 111701 ER - TY - JOUR A1 - Quartinello, Felice A1 - Tallian, Claudia A1 - Auer, Julia A1 - Schön, Herta A1 - Vielnascher, Robert A1 - Weinberger, Simone A1 - Wieland, Karin A1 - Weihs, Anna A1 - Rollett, Alexandra A1 - Lendl, Bernhard A1 - Teuschl, Andreas A1 - Pellis, Alessandro A1 - Gübitz, Georg T1 - Smart Textiles in Wound Care: Functionalization of Cotton/PET Blends with Antimicrobial Nanocapsules JF - Journal of Materials Chemistry B KW - Smart textiles KW - Tissue Engineering KW - Regenerative Medicine KW - Antimicrobial KW - Wound Y1 - 2019 ER - TY - JOUR A1 - Feichtinger, Xaver A1 - Monforte, Xavier A1 - Keibl, Claudia A1 - Hercher, David A1 - Schanda, Jakob A1 - Teuschl, Andreas A1 - Muschitz, Christian A1 - Redl, Heinz A1 - Fialka, Christian A1 - Mittermayr, Rainer T1 - Substantial Biomechanical Improvement by Extracorporeal Shockwave Therapy After Surgical Repair of Rodent Chronic Rotator Cuff Tears. JF - American Journal of Sports Medicine KW - Shockwave Therapy KW - Tissue Engineering KW - Regeneration KW - Surgery Y1 - ER - TY - JOUR A1 - Teuschl, Andreas A1 - Tangl, Stefan A1 - Heimel, Patrick A1 - Schwarze, Uwe Yacine A1 - Monforte, Xavier A1 - Redl, Heinz A1 - Nau, Thomas T1 - Osteointegration of a Novel Silk Fiber-Based ACL Scaffold by Formation of a Ligament-Bone Interface. JF - American Journal of Sports Medicine KW - Tissue Engineering KW - Silk KW - Scaffold KW - ACL Y1 - ER - TY - JOUR A1 - Simsa, Robin A1 - Monforte, Xavier A1 - Salzer, Elias A1 - Teuschl, Andreas A1 - Jenndahl, Lachmi A1 - Bergh, Niklas A1 - Fogelstrand, Per T1 - Effect of fluid dynamics on decellularization efficacy and mechanical properties of blood vessels. JF - PLoS One KW - Tissue Engineering KW - Decellularization KW - Blood Vessel Y1 - ER - TY - JOUR A1 - Tallian, Claudia A1 - Herrero-Rollett, Alexandra A1 - Stadler, Karina A1 - Vielnascher, Robert A1 - Wieland, Karin A1 - Weihs, Anna A1 - Pellis, Alessandro A1 - Teuschl, Andreas A1 - Lendl, Bernhard A1 - Amenitsch, Heinz A1 - Guebitz, Georg M. T1 - Structural insights into pH-responsive drug release of self-assembling human serum albumin-silk fibroin nanocapsules. JF - European Journal of Pharmaceutics and Biopharmaceutics N2 - Inflammation processes are associated with significant decreases in tissue or lysosomal pH from 7.4 to 4, a fact that argues for the application of pH-responsive drug delivery systems. However, for their design and optimization a full understanding of the release mechanism is crucial. In this study we investigated the pH-depending drug release mechanism and the influence of silk fibroin (SF) concentration and SF degradation degree of human serum albumin (HSA)-SF nanocapsules. Sonochemically produced nanocapsules were investigated regarding particle size, colloidal stability, protein encapsulation, thermal stability and drug loading properties. Particles of the monodisperse phase showed average hydrodynamic radii between 438 and 888 nm as measured by DLS and AFM and a zeta potential of -11.12 ± 3.27 mV. Together with DSC results this indicated the successful production of stable nanocapsules. ATR-FTIR analysis demonstrated that SF had a positive effect on particle formation and stability due to induced beta-sheet formation and enhanced crosslinking. The pH-responsive release was found to depend on the SF concentration. In in-vitro release studies, HSA-SF nanocapsules composed of 50% SF showed an increased pH-responsive release for all tested model substances (Rhodamine B, Crystal Violet and Evans Blue) and methotrexate at the lowered pH of 4.5 to pH 5.4, while HSA capsules without SF did not show any pH-responsive drug release. Mechanistic studies using confocal laser scanning microscopy (CLSM) and small angle X-ray scattering (SAXS) analyses showed that increases in particle porosity and decreases in particle densities are directly linked to pH-responsive release properties. Therefore, the pH-responsive release mechanism was identified as diffusion controlled in a novel and unique approach by linking scattering results with in vitro studies. Finally, cytotoxicity studies using the human monocytic THP-1 cell line indicated non-toxic behavior of the drug loaded nanocapsules when applied in a concentration of 62.5 µg mL-1. KW - Biomaterial KW - Tissue Engineering Y1 - ER - TY - GEN A1 - Teuschl, Andreas A1 - Schuh, Christina A1 - Weihs, Anna A1 - Guillaume, Olivier A1 - Monforte Vila, Xavier A1 - Redl, Heinz A1 - Kaplan, David A1 - Rünzler, Dominik T1 - Tailoring bioactivity of silk-based biomaterials via delivering and functionalization strategies with fibrinogen/thrombin, plant lectins or laminin KW - Biomaterials KW - Tissue Engineering KW - Silk Y1 - ER - TY - JOUR A1 - Slezak, Paul A1 - Slezak, Cyrill A1 - Hartinger, Joachim A1 - Teuschl, Andreas A1 - Nürnberger, Sylvia A1 - Redl, Heinz A1 - Mittermayr, Rainer T1 - A Low Cost Implantation Model in the Rat That Allows a Spatial Assessment of Angiogenesis. JF - Frontiers in Bioengineering and Biotechnology N2 - There is continual demand for animal models that allow a quantitative assessment of angiogenic properties of biomaterials, therapies, and pharmaceuticals. In its simplest form, this is done by subcutaneous material implantation and subsequent vessel counting which usually omits spatial data. We have refined an implantation model and paired it with a computational analytic routine which outputs not only vessel count but also vessel density, distribution, and vessel penetration depth, that relies on a centric vessel as a reference point. We have successfully validated our model by characterizing the angiogenic potential of a fibrin matrix in conjunction with recombinant human vascular endothelial growth factor (rhVEGF165). The inferior epigastric vascular pedicles of rats were sheathed with silicone tubes, which were subsequently filled with 0.2 ml of fibrin and different doses of rhVEGF165, centrically embedding the vessels. Over 4 weeks, tissue samples were harvested and subsequently immunohistologically stained and computationally analyzed. The model was able to detect variations over the angiogenic potentials of growth factor spiked fibrin matrices. Adding 20 ng of rhVEGF165 resulted in a significant increase in vasculature while 200 ng of rhVEGF165 did not improve vascular growth. Vascularized tissue volume increased during the first week and vascular density increased during the second week. Total vessel count increased significantly and exhibited a peak after 2 weeks which was followed by a resorption of vasculature by week 4. In summary, a simple implantation model to study in vivo vascularization with only a minimal workload attached was enhanced to include morphologic data of the emerging vascular tree. KW - Tissue Engineering KW - Bioreactor KW - Biomaterial Y1 - ER - TY - JOUR A1 - Berkovitch, Yulia A1 - Cohen, Talia A1 - Peled, Eli A1 - Schmidhammer, Robert A1 - Hildner, Florian A1 - Teuschl, Andreas A1 - Wolbank, Susanne A1 - Yelin, Dvir A1 - Redl, Heinz A1 - Seliktar, Dror T1 - Hydrogel composition and laser micropatterning to regulate sciatic nerve regeneration. JF - Journal of Tissue Engineering and Regenerative Medicine N2 - Treatment of peripheral nerve injuries has evolved over the past several decades to include the use of sophisticated new materials endowed with trophic and topographical cues that are essential for in vivo nerve fibre regeneration. In this research, we explored the use of an advanced design strategy for peripheral nerve repair, using biological and semi-synthetic hydrogels that enable controlled environmental stimuli to regenerate neurons and glial cells in a rat sciatic nerve resection model. The provisional nerve growth conduits were composed of either natural fibrin or adducts of synthetic polyethylene glycol and fibrinogen or gelatin. A photo-patterning technique was further applied to these 3D hydrogel biomaterials, in the form of laser-ablated microchannels, to provide contact guidance for unidirectional growth following sciatic nerve injury. We tested the regeneration capacity of subcritical nerve gap injuries in rats treated with photo-patterned materials and compared these with injuries treated with unpatterned hydrogels, either stiff or compliant. Among the factors tested were shear modulus, biological composition, and micropatterning of the materials. The microchannel guidance patterns, combined with appropriately matched degradation and stiffness properties of the material, proved most essential for the uniform tissue propagation during the nerve regeneration process. KW - Tissue Engineering KW - Biomaterials KW - Nerve Regeneration Y1 - SP - 1049 EP - 1061 ER - TY - GEN A1 - Teuschl, Andreas A1 - Heimel, Patrick A1 - Monforte Vila, Xavier A1 - Nürnberger, Sylvia A1 - Tangl, Stefan A1 - van Griensven, Martijn A1 - Redl, Heinz A1 - Nau, Thomas T1 - Anterior cruciate ligament regeneration using the silk-based RegACL scaffold KW - Tissue Engineering KW - Silk KW - Biomaterial KW - Anterior Cruciate Ligament Y1 - ER - TY - CHAP A1 - Hackethal, Johannes A1 - Schuh, Christina A1 - Hofer, Alexandra A1 - Meixner, Barbara A1 - Hennerbichler, Simone A1 - Redl, Heinz A1 - Teuschl, Andreas T1 - Human Placenta Laminin-111 as a Multifunctional Protein for Tissue Engineering and Regenerative Medicine T2 - Advances in Experimental Medicine and Biology KW - Biomaterial KW - Tissue Engineering KW - Regenerative medicine Y1 - PB - Springer ER - TY - GEN A1 - Salzer, Elias A1 - Rieder, Bernhard A1 - Monforte Vila, Xavier A1 - Weihs, Anna A1 - Rünzler, Dominik A1 - Teuschl, Andreas T1 - Evaluation of a novel hydrostatic pressure bioreactor on bovine cartilage chips KW - Bioreactor KW - Tissue Engineering KW - Cartilage Y1 - ER - TY - RPRT A1 - Freistetter, Florian T1 - The Power of Lauf KW - Bioreactor KW - Muscle KW - Tissue Engineering Y1 - ER - TY - GEN A1 - Weihs, Anna T1 - Shock wave treatment for in vitro tissue engineering applications KW - Shockwave treatment KW - In Vitro KW - Tissue Engineering Y1 - 2018 ER - TY - GEN A1 - Weihs, Anna T1 - Shock wave treatment for in vitro tissue engineering applications KW - Shockwave treatment KW - In Vitro KW - Tissue Engineering Y1 - 2018 ER - TY - JOUR A1 - Nau, Thomas A1 - Teuschl, Andreas T1 - Regeneration of the anterior cruciate ligament: Current strategies in tissue engineering JF - World Journal of Orthopedics KW - Ligament KW - Regeneration KW - Tissue Engineering Y1 - VL - 6 IS - 1 ER - TY - GEN A1 - Stoiber, Stefan A1 - Purtscher, Michaela A1 - Gepp, Barbara A1 - Huber-Gries, Carina T1 - Towards a platform for spatially defined cell characterization of a miniturized heart tissue model KW - Microfluidic KW - Tissue Engineering KW - Heart Y1 - ER - TY - JOUR A1 - Simsa, Robin A1 - Padma, Arvind A1 - Heher, Philipp A1 - Hellström, Mats A1 - Teuschl, Andreas A1 - Jenndahl, Lachmi A1 - Bergh, Niklas A1 - Fogelstrand, Per T1 - Systematic in vitro comparison of decellularization protocols for blood vessels. JF - PLoS One KW - Tissue Engineering KW - Decellularization KW - Blood Vessel Y1 - ER - TY - JOUR A1 - Nürnberger, S. A1 - Schneider, C. A1 - Keibl, C. A1 - Schädl, Barbara A1 - Heimel, P. A1 - Monforte, X. A1 - Teuschl, A. H. A1 - Nalbach, M. A1 - Thurner, P. J. A1 - Grillari, J. A1 - Redl, Heinz A1 - Wolbank, S. T1 - Repopulation of decellularised articular cartilage by laser-based matrix engraving JF - EBioMedicine. N2 - Background: In spite of advances in the treatment of cartilage defects using cell and scaffold-based therapeutic strategies, the long-term outcome is still not satisfying since clinical scores decline years after treatment. Scaffold materials currently used in clinical settings have shown limitations in providing suitable biomechanical properties and an authentic and protective environment for regenerative cells. To tackle this problem, we developed a scaffold material based on decellularised human articular cartilage. Methods: Human articular cartilage matrix was engraved using a CO2 laser and treated for decellularisation and glycosaminoglycan removal. Characterisation of the resulting scaffold was performed via mechanical testing, DNA and GAG quantification and in vitro cultivation with adipose-derived stromal cells (ASC). Cell vitality, adhesion and chondrogenic differentiation were assessed. An ectopic, unloaded mouse model was used for the assessment of the in vivo performance of the scaffold in combination with ASC and human as well as bovine chondrocytes. The novel scaffold was compared to a commercial collagen type I/III scaffold. Findings: Crossed line engravings of the matrix allowed for a most regular and ubiquitous distribution of cells and chemical as well as enzymatic matrix treatment was performed to increase cell adhesion. The biomechanical characteristics of this novel scaffold that we term CartiScaff were found to be superior to those of commercially available materials. Neo-tissue was integrated excellently into the scaffold matrix and new collagen fibres were guided by the laser incisions towards a vertical alignment, a typical feature of native cartilage important for nutrition and biomechanics. In an ectopic, unloaded in vivo model, chondrocytes and mesenchymal stromal cells differentiated within the incisions despite the lack of growth factors and load, indicating a strong chondrogenic microenvironment within the scaffold incisions. Cells, most noticeably bone marrow-derived cells, were able to repopulate the empty chondrocyte lacunae inside the scaffold matrix. Interpretation: Due to the better load-bearing, its chondrogenic effect and the ability to guide matrix-deposition, CartiScaff is a promising biomaterial to accelerate rehabilitation and to improve long term clinical success of cartilage defect treatment. Funding: Austrian Research Promotion Agency FFG ("CartiScaff" #842455), Lorenz Böhler Fonds (16/13), City of Vienna Competence Team Project Signaltissue (MA23, #18-08). Keywords: Cartilage regeneration; Decellularisation; Ectopic animal model; Laser engraving; Mechanical testing; Repopulation. KW - Tissue Engineering KW - Cartilage regeneration KW - Mechanical Testing KW - Decellularization KW - Biomaterials Y1 - 2021 VL - 64 IS - 103196. ER - TY - JOUR A1 - Schneider, Karl Heinrich A1 - Enayati, Marjan A1 - Grasl, Christian A1 - Walter, Ingrid A1 - Budinsky, Lubos A1 - Zebic, Gabriel A1 - Kaun, Christoph A1 - Wagner, Anja A1 - Kratochwill, Klaus A1 - Redl, Heinz A1 - Teuschl, Andreas A1 - Podesser, Bruno K. A1 - Bergmeister, Helga T1 - Acellular vascular matrix grafts from human placenta chorion: Impact of ECM preservation on graft characteristics, protein composition and in vivo performance. JF - Biomaterials N2 - Small diameter vascular grafts from human placenta, decellularized with either Triton X-100 (Triton) or SDS and crosslinked with heparin were constructed and characterized. Graft biochemical properties, residual DNA, and protein composition were evaluated to compare the effect of the two detergents on graft matrix composition and structural alterations. Biocompatibility was tested in vitro by culturing the grafts with primary human macrophages and in vivo by subcutaneous implantation of graft conduits (n = 7 per group) into the flanks of nude rats. Subsequently, graft performance was evaluated using an aortic implantation model in Sprague Dawley rats (one month, n = 14). In situ graft imaging was performed using MRI angiography. Retrieved specimens were analyzed by electromyography, scanning electron microscopy, histology and immunohistochemistry to evaluate cell migration and the degree of functional tissue remodeling. Both decellularization methods resulted in grafts of excellent biocompatibility in vitro and in vivo, with low immunogenic potential. Proteomic data revealed removal of cytoplasmic proteins with relative enrichment of ECM proteins in decelluarized specimens of both groups. Noteworthy, LC-Mass Spectrometry analysis revealed that 16 proteins were exclusively preserved in Triton decellularized specimens in comparison to SDS-treated specimens. Aortic grafts showed high patency rates, no signs of thrombus formation, aneurysms or rupture. Conduits of both groups revealed tissue-specific cell migration indicative of functional remodeling. This study strongly suggests that decellularized allogenic grafts from the human placenta have the potential to be used as vascular replacement materials. Both detergents produced grafts with low residual immunogenicity and appropriate mechanical properties. Observed differences in graft characteristics due to preservation method had no impact on successful in vivo performance in the rodent model. KW - Biomaterial KW - Tissue Engineering Y1 - SP - 14 EP - 26 ER - TY - JOUR A1 - Teuschl, Andreas A1 - Holnthoner, Wolfgang A1 - Monforte, Xavier T1 - Repopulation of an auricular cartilage scaffold, AuriScaff, perforated with an enzyme combination JF - Acta Biomater. N2 - Biomaterials currently in use for articular cartilage regeneration do not mimic the composition or architecture of hyaline cartilage, leading to the formation of repair tissue with inferior characteristics. In this study we demonstrate the use of "AuriScaff", an enzymatically perforated bovine auricular cartilage scaffold, as a novel biomaterial for repopulation with regenerative cells and for the formation of high-quality hyaline cartilage. AuriScaff features a traversing channel network, generated by selective depletion of elastic fibers, enabling uniform repopulation with therapeutic cells. The complex collagen type II matrix is left intact, as observed by immunohistochemistry, SEM and TEM. The compressive modulus is diminished, but three times higher than in the clinically used collagen type I/III scaffold that served as control. Seeding tests with human articular chondrocytes (hAC) alone and in co-culture with human adipose-derived stromal/stem cells (ASC) confirmed that the network enabled cell migration throughout the scaffold. It also guides collagen alignment along the channels and, due to the generally traverse channel alignment, newly deposited cartilage matrix corresponds with the orientation of collagen within articular cartilage. In an osteochondral plug model, AuriScaff filled the complete defect with compact collagen type II matrix and enabled chondrogenic differentiation inside the channels. Using adult articular chondrocytes from bovine origin (bAC), filling of even deep defects with high-quality hyaline-like cartilage was achieved after 6 weeks in vivo. With its composition and spatial organization, AuriScaff provides an optimal chondrogenic environment for therapeutic cells to treat cartilage defects and is expected to improve long-term outcome by channel-guided repopulation followed by matrix deposition and alignment. STATEMENT OF SIGNIFICANCE: After two decades of tissue engineering for cartilage regeneration, there is still no optimal strategy available to overcome problems such as inconsistent clinical outcome, early and late graft failures. Especially large defects are dependent on biomaterials and their scaffolding, guiding and protective function. Considering the currently used biomaterials, structure and mechanical properties appear to be insufficient to fulfill this task. The novel scaffold developed within this study is the first approach enabling the use of dense cartilage matrix, repopulate it via channels and provide the cells with a compact collagen type II environment. Due to its density, it also provides better mechanical properties than materials currently used in clinics. We therefore think, that the auricular cartilage scaffold (AuriScaff) has a high potential to improve future cartilage regeneration approaches. KW - Auricular cartilage KW - Cartilage Regeneration KW - Human adipose derived stromal/stem cells KW - Tissue Engineering KW - Decellularization Y1 - 2020 VL - 2019 IS - Mar/86 SP - 207 EP - 222 ER - TY - JOUR A1 - Bachmann, Barbara A1 - Spitz, Sarah A1 - Rothbauer, Mario A1 - Jordan, Christian A1 - Purtscher, Michaela A1 - Zirath, Helene A1 - Schuller, Patrick A1 - Eilenberger, Christoph A1 - Ali, Syed Faheem A1 - Mühleder, Severin A1 - Priglinger, Eleni A1 - Harasek, Michael A1 - Redl, Heinz A1 - Holnthoner, Wolfgang A1 - Ertl, Peter T1 - Engineering of three-dimensional pre-vascular networks within fibrin hydrogel constructs by microfluidic control over reciprocal cell signaling JF - Biomicrofluidics KW - Microfluidic KW - Vascularization KW - Tissue Engineering Y1 - 2019 ER - TY - JOUR A1 - Schneider, Karl A1 - Rohringer, Sabrina A1 - Kapeller, Barbara A1 - Grasl, Christian A1 - Kiss, Herbert A1 - Heber, Stefan A1 - Walter, Ingrid A1 - Teuschl, Andreas A1 - Podesser, Bruno K. A1 - Bergmeister, Helga T1 - Riboflavin-mediated photooxidation to improve the characteristics of decellularized human arterial small diameter vascular grafts JF - Acta Biomater. N2 - Vascular grafts with a diameter of less than 6 mm are made from a variety of materials and techniques to provide alternatives to autologous vascular grafts. Decellularized materials have been proposed as a possible approach to create extracellular matrix (ECM) vascular prostheses as they are naturally derived and inherently support various cell functions. However, these desirable graft characteristics may be limited by alterations of the ECM during the decellularization process leading to decreased biomechanical properties and hemocompatibility. In this study, arteries from the human placenta chorion were decellularized using two distinct detergents (Triton X-100 or SDS), which differently affect ECM ultrastructure. To overcome biomechanical strength loss and collagen fiber exposure after decellularization, riboflavin-mediated UV (RUV) crosslinking was used to uniformly crosslink the collagenous ECM of the grafts. Graft characteristics and biocompatibility with and without RUV crosslinking were studied in vitro and in vivo. RUV-crosslinked ECM grafts showed significantly improved mechanical strength and smoothening of the luminal graft surfaces. Cell seeding using human endothelial cells revealed no cytotoxic effects of the RUV treatment. Short-term aortic implants in rats showed cell migration and differentiation of host cells. Functional graft remodeling was evident in all grafts. Thus, RUV crosslinking is a preferable tool to improve graft characteristics of decellularized matrix conduits. KW - Tissue Engineering KW - Biomaterials KW - Vascularization Y1 - 2021 VL - 2020 IS - 116 SP - 246 EP - 258 ER - TY - JOUR A1 - Schneider, Jaana A1 - Pultar, Marianne A1 - Oesterreicher, Johannes A1 - Bobbili, Madhusudhan Reddy A1 - Mühleder, Severin A1 - Priglinger, Eleni A1 - Redl, Heinz A1 - Spittler, Andreas A1 - Grillari, Johannes A1 - Holnthoner, Wolfgang T1 - Cre mRNA Is Not Transferred by EVs from Endothelial and Adipose-Derived Stromal/Stem Cells during Vascular Network Formation JF - Int J Mol Sci. N2 - Coculture systems employing adipose tissue-derived mesenchymal stromal/stem cells (ASC) and endothelial cells (EC) represent a widely used technique to model vascularization. Within this system, cell-cell communication is crucial for the achievement of functional vascular network formation. Extracellular vesicles (EVs) have recently emerged as key players in cell communication by transferring bioactive molecules between cells. In this study we aimed to address the role of EVs in ASC/EC cocultures by discriminating between cells, which have received functional EV cargo from cells that have not. Therefore, we employed the Cre-loxP system, which is based on donor cells expressing the Cre recombinase, whose mRNA was previously shown to be packaged into EVs and reporter cells containing a construct of floxed dsRed upstream of the eGFP coding sequence. The evaluation of Cre induced color switch in the reporter system via EVs indicated that there is no EV-mediated RNA transmission either between EC themselves or EC and ASC. However, since Cre mRNA was not found present in EVs, it remains unclear if Cre mRNA is generally not packaged into EVs or if EVs are not taken up by the utilized cell types. Our data indicate that this technique may not be applicable to evaluate EV-mediated cell-to-cell communication in an in vitro setting using EC and ASC. Further investigations will require a functional system showing efficient and specific loading of Cre mRNA or protein into EVs. KW - Tissue Engineering KW - Stem Cells KW - Vascular Network Formation KW - EVs KW - Endothelial Cells Y1 - VL - 2021 IS - 22(8) SP - 4050 ER - TY - JOUR A1 - Nürnberger, Sylvia A1 - Schneider, Cornelia A1 - van Osch, Gerjo A1 - Keibl, Claudia A1 - Rieder, Bernhard A1 - Monforte, Xavier A1 - Teuschl, Andreas A1 - Mühleder, Severin A1 - Holnthoner, Wolfgang A1 - Schädl, Barbara A1 - Gahleitner, Christoph A1 - Redl, Heinz A1 - Wolbank, Susanne T1 - Repopulation of an auricular cartilage scaffold, AuriScaff, perforated with an enzyme combination. JF - Acta Biomaterialia KW - Tissue Engineering KW - Decellularization KW - Cartilage Y1 - ER - TY - JOUR A1 - Johannes, Hackethal A1 - Weihs, Anna A1 - Karner, Lisa A1 - Metzger, Magdalena A1 - Dungel, Peter A1 - Hennerbichler, Simone A1 - Redl, Heinz A1 - Teuschl-Woller, Andreas Herbert T1 - Novel Human Placenta-Based Extract for Vascularization Strategies in Tissue Engineering JF - Tissue Eng Part C Methods N2 - There is critical unmet need for new vascularized tissues to support or replace injured tissues and organs. Various synthetic and natural materials were already established for use of two-dimensional (2D) and three-dimensional (3D) in vitro neovascularization assays, however, they still cannot mimic the complex functions of the sum of the extracellular matrix (ECM) in native intact tissue. Currently, this issue is only addressed by artificial products such as Matrigel™, which comprises a complex mixture of ECM proteins, extracted from animal tumor tissue. Despite its outstanding bioactivity, the isolation from tumor tissue hinders its translation into clinical applications. Since nonhuman ECM proteins may cause immune reactions, as are frequently observed in clinical trials, human ECM proteins represent the best option when aiming for clinical applications. Here, we describe an effective method of isolating a human placenta substrate (hpS) that induces the spontaneous formation of an interconnected network of green fluorescence-labeled human umbilical vein endothelial cells (gfpHUVECs) in vitro. The substrate was biochemically characterized by using a combination of bicinchoninic acid (BCA) assay, DNA, and glycosaminoglycan (GAG) content assays, sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) analysis and Western blot, angiogenesis arrays, chromatographic thrombin detection, high performance liquid chromatography (HPLC)-based amino acid quantification analysis, and assessment of antimicrobial properties. 2D in vitro cell culture experiments have been performed to determine the vasculogenic potential of hpS, which demonstrated that cell networks developed on hpS show a significantly higher degree of complexity (number of tubules/junctions; total/mean tube length) when compared with Matrigel. As 3D cell culture techniques represent a more accurate representation of the in vivo condition, the substrate was 3D solidified using various natural polymers. 3D in vitro vasculogenesis assays have been performed by seeding gfpHUVECs in an hpS-fibrinogen clot. In conclusion, hpS provides a potent human/material-based alternative to xenogenic-material-based biomaterials for vascularization strategies in tissue engineering. KW - Tissue Engineering KW - Biomaterials KW - HUVEC KW - Acellular biological matrices KW - Angiogenesis and vasculogenesis Y1 - VL - 27 IS - 11 SP - 616 EP - 632 ER - TY - JOUR A1 - Schneider, Karl H. A1 - Rohringer, Sabrina A1 - Kapeller, Barbara A1 - Grasl, Christian A1 - Kiss, Herbert A1 - Heber, Stefan A1 - Walter, Ingrid A1 - Teuschl, Andreas H. A1 - Podesser, Bruno K. A1 - Bergmeister, Helga T1 - Riboflavin-mediated photooxidation to improve the characteristics of decellularized human arterial small diameter vascular grafts JF - Acta Biomaterialia N2 - Vascular grafts with a diameter of less than 6 mm are made from a variety of materials and techniques to provide alternatives to autologous vascular grafts. Decellularized materials have been proposed as a possible approach to create extracellular matrix (ECM) vascular prostheses as they are naturally derived and inherently support various cell functions. However, these desirable graft characteristics may be limited by alterations of the ECM during the decellularization process leading to decreased biomechanical properties and hemocompatibility. In this study, arteries from the human placenta chorion were decellularized using two distinct detergents (Triton X-100 or SDS), which differently affect ECM ultrastructure. To overcome biomechanical strength loss and collagen fiber exposure after decellularization, riboflavin-mediated UV (RUV) crosslinking was used to uniformly crosslink the collagenous ECM of the grafts. Graft characteristics and biocompatibility with and without RUV crosslinking were studied in vitro and in vivo. RUV-crosslinked ECM grafts showed significantly improved mechanical strength and smoothening of the luminal graft surfaces. Cell seeding using human endothelial cells revealed no cytotoxic effects of the RUV treatment. Short-term aortic implants in rats showed cell migration and differentiation of host cells. Functional graft remodeling was evident in all grafts. Thus, RUV crosslinking is a preferable tool to improve graft characteristics of decellularized matrix conduits. KW - Tissue Engineering KW - Small diameter vascular graft KW - Biomaterials KW - Decellularization KW - Surface modification Y1 - VL - 116 SP - 246 EP - 258 ER - TY - JOUR A1 - Heinzel, Johannes Christoph A1 - Oberhauser, Viola A1 - Keibl, Claudia A1 - Schädl, Barbara A1 - Swiadek, Nicole V. A1 - Längle, Gregor A1 - Frick, Helen A1 - Slezak, Cyrill A1 - Prahm, Cosima A1 - Grillari, Johannes A1 - Kolbenschlag, Jonas A1 - Hercher, David T1 - ESWT Diminishes Axonal Regeneration following Repair of the Rat Median Nerve with Muscle-In-Vein Conduits but Not after Autologous Nerve Grafting JF - Biomedicines N2 - Investigations reporting positive effects of extracorporeal shockwave therapy (ESWT) on nerve regeneration are limited to the rat sciatic nerve model. The effects of ESWT on muscle-in-vein conduits (MVCs) have also not been investigated yet. This study aimed to evaluate the effects of ESWT after repair of the rat median nerve with either autografts (ANGs) or MVCs. In male Lewis rats, a 7 mm segment of the right median nerve was reconstructed either with an ANG or an MVC. For each reconstructive technique, one group of animals received one application of ESWT while the other rats served as controls. The animals were observed for 12 weeks, and nerve regeneration was assessed using computerized gait analysis, the grasping test, electrophysiological evaluations and histological quantification of axons, blood vessels and lymphatic vasculature. Here, we provide for the first time a comprehensive analysis of ESWT effects on nerve regeneration in a rat model of median nerve injury. Furthermore, this study is among the first reporting the quantification of lymphatic vessels following peripheral nerve injury and reconstruction in vivo. While we found no significant direct positive effects of ESWT on peripheral nerve regeneration, results following nerve repair with MVCs were significantly inferior to those after ANG repair. KW - Tissue Engineering KW - Muscle-In-Vein Conduits KW - Axonal Regeneration KW - Autologous Nerve Grafting Y1 - VL - 2022 IS - 10(8) SP - 1777 ER - TY - JOUR A1 - Schneider, Karl Heinrich A1 - Aigner, Petra A1 - Holnthoner, Wolfgang A1 - Monforte Vila, Xavier A1 - Nürnberger, Sylvia A1 - Rünzler, Dominik A1 - Redl, Heinz A1 - Teuschl, Andreas T1 - Decellularized human placenta chorion matrix as a favorable source of small-diameter vascular grafts JF - Acta Biomaterialia KW - Grafting KW - Tissue Engineering Y1 - 2018 ER - TY - JOUR A1 - Heimel, Patrick A1 - Swiadek, Nicole V. A1 - Slezak, Paul A1 - Kerbl, Markus A1 - Schneider, Cornelia A1 - Nürnberger, Sylvia A1 - Redl, Heinz A1 - Teuschl, Andreas A1 - Hercher, David T1 - Iodine-Enhanced Micro-CT Imaging of Soft Tissue on the Example of Peripheral Nerve Regeneration JF - Contrast Media & Molecular Imaging KW - µCT KW - Imaging KW - Tissue Engineering KW - Tissue Regeneration Y1 - ER - TY - JOUR A1 - Strohmeier, Karin A1 - Hofmann, Martina A1 - Jacak, Jaroslaw A1 - Narzt, Marie-Sophie A1 - Wahlmueller, Marlene A1 - Mairhofer, Mario A1 - Schädl, Barbara A1 - Holnthoner, Wolfgang A1 - Barsch, Martin A1 - Sandhofer, Matthias A1 - Wolbank, Susanne A1 - Priglinger, Eleni T1 - Multi-Level Analysis of Adipose Tissue Reveals the Relevance of Perivascular Subpopulations and an Increased Endothelial Permeability in Early-Stage Lipedema JF - Biomedicines N2 - Lipedema is a chronic, progressive disease of adipose tissue with unknown etiology. Based on the relevance of the stromal vascular fraction (SVF) cell population in lipedema, we performed a thorough characterization of subcutaneous adipose tissue, SVF isolated thereof and the sorted populations of endothelial cells (EC), pericytes and cultured adipose-derived stromal/stem cells (ASC) of early-stage lipedema patients. We employed histological and gene expression analysis and investigated the endothelial barrier by immunofluorescence and analysis of endothelial permeability in vitro. Although there were no significant differences in histological stainings, we found altered gene expression of factors relevant for local estrogen metabolism (aromatase), preadipocyte commitment (ZNF423) and immune cell infiltration (CD11c) in lipedema on the tissue level, as well as in distinct cellular subpopulations. Machine learning analysis of immunofluorescence images of CD31 and ZO-1 revealed a morphological difference in the cellular junctions of EC cultures derived from healthy and lipedema individuals. Furthermore, the secretome of lipedema-derived SVF cells was sufficient to significantly increase leakiness of healthy human primary EC, which was also reflected by decreased mRNA expression of VE-cadherin. Here, we showed for the first time that the secretome of SVF cells creates an environment that triggers endothelial barrier dysfunction in early-stage lipedema. Moreover, since alterations in gene expression were detected on the cellular and/or tissue level, the choice of sample material is of high importance in elucidating this complex disease. KW - Tissue Engineering KW - Adipose Tissue KW - Lipedema KW - Endothelial Cells Y1 - VL - 2022 IS - 10(5) SP - 1163 ER - TY - JOUR A1 - Trisko, Johanna A1 - Fleck, Johanna A1 - Kau, Silvio A1 - Oesterreicher, Johannes A1 - Holnthoner, Wolfgang T1 - Lymphatic and Blood Endothelial Extracellular Vesicles: A Story Yet to Be Written JF - Life N2 - Extracellular vesicles (EVs), such as exosomes, microvesicles, and apoptotic bodies, are cell-derived, lipid bilayer-enclosed particles mediating intercellular communication and are therefore vital for transmitting a plethora of biological signals. The vascular endothelium substantially contributes to the circulating particulate secretome, targeting important signaling pathways that affect blood cells and regulate adaptation and plasticity of endothelial cells in a paracrine manner. Different molecular signatures and functional properties of endothelial cells reflect their heterogeneity among different vascular beds and drive current research to understand varying physiological and pathological effects of blood and lymphatic endothelial EVs. Endothelial EVs have been linked to the development and progression of various vascular diseases, thus having the potential to serve as biomarkers and clinical treatment targets. This review aims to provide a brief overview of the human vasculature, the biology of extracellular vesicles, and the current knowledge of endothelium-derived EVs, including their potential role as biomarkers in disease development. KW - Tissue Engineering KW - Endothelial Cells KW - vascularization KW - extracellular vesicles KW - lymphatic endothelial cells Y1 - VL - 2022 IS - 12(5) SP - 654 ER - TY - JOUR A1 - Sayer, Simon A1 - Zandrini, Tommaso A1 - Markovic, Marica A1 - Van Hoorick, Jasper A1 - Van Vlierberghe, Sandra A1 - Baudis, Stefan A1 - Holnthoner, Wolfgang A1 - Ovsianikov, Aleksandr T1 - Guiding cell migration in 3D with high-resolution photografting JF - Scientific Reports N2 - Multi-photon lithography (MPL) has proven to be a suitable tool to precisely control the microenvironment of cells in terms of the biochemical and biophysical properties of the hydrogel matrix. In this work, we present a novel method, based on multi-photon photografting of 4,4′-diazido-2,2′-stilbenedisulfonic acid (DSSA), and its capabilities to induce cell alignment, directional cell migration and endothelial sprouting in a gelatin-based hydrogel matrix. DSSA-photografting allows for the fabrication of complex patterns at a high-resolution and is a biocompatible, universally applicable and straightforward process that is comparably fast. We have demonstrated the preferential orientation of human adipose-derived stem cells (hASCs) in response to a photografted pattern. Co-culture spheroids of hASCs and human umbilical vein endothelial cells (HUVECs) have been utilized to study the directional migration of hASCs into the modified regions. Subsequently, we have highlighted the dependence of endothelial sprouting on the presence of hASCs and demonstrated the potential of photografting to control the direction of the sprouts. MPL-induced DSSA-photografting has been established as a promising method to selectively alter the microenvironment of cells. KW - Tissue Engineering KW - Cell migration KW - photografting Y1 - VL - 2022 IS - 12(1), 10196 SP - 8626 ER - TY - JOUR A1 - Hromada, Carina A1 - Hartmann, Jaana A1 - Oesterreicher, Johannes A1 - Stoiber, Anton A1 - Daerr, Anna A1 - Schädl, Barbara A1 - Priglinger, Eleni A1 - Teuschl-Woller, Andreas H. A1 - Holnthoner, Wolfgang A1 - Heinzel, Johannes Christoph A1 - Hercher, David T1 - Occurrence of Lymphangiogenesis in Peripheral Nerve Autografts Contrasts Schwann Cell-Induced Apoptosis of Lymphatic Endothelial Cells In Vitro JF - Biomolecules N2 - Peripheral nerve injuries pose a major clinical concern world-wide, and functional recovery after segmental peripheral nerve injury is often unsatisfactory, even in cases of autografting. Although it is well established that angiogenesis plays a pivotal role during nerve regeneration, the influence of lymphangiogenesis is strongly under-investigated. In this study, we analyzed the presence of lymphatic vasculature in healthy and regenerated murine peripheral nerves, revealing that nerve autografts contained increased numbers of lymphatic vessels after segmental damage. This led us to elucidate the interaction between lymphatic endothelial cells (LECs) and Schwann cells (SCs) in vitro. We show that SC and LEC secretomes did not influence the respective other cell types' migration and proliferation in 2D scratch assay experiments. Furthermore, we successfully created lymphatic microvascular structures in SC-embedded 3D fibrin hydrogels, in the presence of supporting cells; whereas SCs seemed to exert anti-lymphangiogenic effects when cultured with LECs alone. Here, we describe, for the first time, increased lymphangiogenesis after peripheral nerve injury and repair. Furthermore, our findings indicate a potential lymph-repellent property of SCs, thereby providing a possible explanation for the lack of lymphatic vessels in the healthy endoneurium. Our results highlight the importance of elucidating the molecular mechanisms of SC-LEC interaction. KW - Tissue Engineering KW - peripheral nerve regeneration KW - lymphangiogenesis KW - Schwann cells KW - lymphatic endothelial cells Y1 - VL - 2022 IS - 12, 6 SP - 820 ER - TY - JOUR A1 - Lauer, Henrik A1 - Prahm, Cosima A1 - Thiel, Johannes Tobias A1 - Kolbenschlag, Jonas A1 - Daigeler, Adrien A1 - Hercher, David A1 - Heinzel, Johannes Christoph T1 - The Grasping Test Revisited: A Systematic Review of Functional Recovery in Rat Models of Median Nerve Injury JF - Biomedicines N2 - The rat median nerve model is a well-established and frequently used model for peripheral nerve injury and repair. The grasping test is the gold-standard to evaluate functional recovery in this model. However, no comprehensive review exists to summarize the course of functional recovery in regard to the lesion type. According to PRISMA-guidelines, research was performed, including the databases PubMed and Web of Science. Groups were: (1) crush injury, (2) transection with end-to-end or with (3) end-to-side coaptation and (4) isogenic or acellular allogenic grafting. Total and respective number, as well as rat strain, type of nerve defect, length of isogenic or acellular allogenic allografts, time at first signs of motor recovery (FSR) and maximal recovery grasping strength (MRGS), were evaluated. In total, 47 articles met the inclusion criteria. Group I showed earliest signs of motor recovery. Slow recovery was observable in group III and in graft length above 25 mm. Isografts recovered faster compared to other grafts. The onset and course of recovery is heavily dependent from the type of nerve injury. The grasping test should be used complementary in addition to other volitional and non-volitional tests. Repetitive examinations should be planned carefully to optimize assessment of valid and reliable data. KW - Tissue Engineering KW - Median Nerve Injury KW - Nerve Regeneration Y1 - VL - 2022 IS - 10(8) SP - 1878 ER - TY - JOUR A1 - Rothbauer, Mario A1 - Byrne, Ruth A. A1 - Schobesberger, Silvia A1 - Olmos Calvo, Isabel A1 - Fischer, Anita A1 - Reihs, Eva I. A1 - Spitz, Sarah A1 - Bachmann, Barbara A1 - Sevelda, Florian A1 - Holinka, Johannes A1 - Holnthoner, Wolfgang A1 - Redl, Heinz A1 - Toegel, Stefan A1 - Windhager, Reinhard A1 - Kiener, Hans P. A1 - Ertl, Peter T1 - Establishment of a human three-dimensional chip-based chondro-synovial coculture joint model for reciprocal cross talk studies in arthritis research JF - Lab on a Chip N2 - Rheumatoid arthritis is characterised by a progressive, intermittent inflammation at the synovial membrane, which ultimately leads to the destruction of the synovial joint. The synovial membrane as the joint capsule's inner layer is lined with fibroblast-like synoviocytes that are the key player supporting persistent arthritis leading to bone erosion and cartilage destruction. While microfluidic models that model molecular aspects of bone erosion between bone-derived cells and synoviocytes have been established, RA's synovial-chondral axis has not yet been realised using a microfluidic 3D model based on human patient in vitro cultures. Consequently, we established a chip-based three-dimensional tissue coculture model that simulates the reciprocal cross talk between individual synovial and chondral organoids. When co-cultivated with synovial organoids, we could demonstrate that chondral organoids induce a higher degree of cartilage physiology and architecture and show differential cytokine response compared to their respective monocultures highlighting the importance of reciprocal tissue-level cross talk in the modelling of arthritic diseases. KW - Tissue Engineering KW - coculture joint model KW - arthritis KW - human three-dimensional chip Y1 - VL - 2021 IS - 21 SP - 4128 EP - 4143 ER - TY - JOUR A1 - Ashmwe, Mohamed A1 - Posa, Katja A1 - Rührnößl, Alexander A1 - Heinzel, Johannes Christoph A1 - Heimel, Patrick A1 - Mock, Michael A1 - Schädl, Barbara A1 - Keibl, Claudia A1 - Couillard-Despres, Sebastien A1 - Redl, Heinz A1 - Mittermayr, Rainer A1 - Hercher, David T1 - Effects of Extracorporeal Shockwave Therapy on Functional Recovery and Circulating miR-375 and miR-382-5p after Subacute and Chronic Spinal Cord Contusion Injury in Rats JF - Biomedicines N2 - Extracorporeal shockwave therapy (ESWT) can stimulate processes to promote regeneration, including cell proliferation and modulation of inflammation. Specific miRNA expression panels have been established to define correlations with regulatory targets within these pathways. This study aims to investigate the influence of low-energy ESWT-applied within the subacute and chronic phase of SCI (spinal cord injury) on recovery in a rat spinal cord contusion model. Outcomes were evaluated by gait analysis, µCT and histological analysis of spinal cords. A panel of serum-derived miRNAs after SCI and after ESWT was investigated to identify injury-, regeneration- and treatment-associated expression patterns. Rats receiving ESWT showed significant improvement in motor function in both a subacute and a chronic experimental setting. This effect was not reflected in changes in morphology, µCT-parameters or histological markers after ESWT. Expression analysis of various miRNAs, however, revealed changes after SCI and ESWT, with increased miR-375, indicating a neuroprotective effect, and decreased miR-382-5p potentially improving neuroplasticity via its regulatory involvement with BDNF. We were able to demonstrate a functional improvement of ESWT-treated animals after SCI in a subacute and chronic setting. Furthermore, the identification of miR-375 and miR-382-5p could potentially provide new targets for therapeutic intervention in future studies. KW - Tissue Engineering KW - ESWT KW - Spinal Cord Injury Y1 - U6 - http://dx.doi.org/https://doi.org/10.3390/biomedicines10071630 VL - 2022 IS - 10(7) SP - 1630 ER -