TY - CHAP A1 - Rank, Elisabet A1 - Traxler, Lukas A1 - Bayer, Natascha A1 - Reutterer, Bernd A1 - Lux, Kirsten A1 - Drauschke, Andreas T1 - Reproducibility analysis of measurements with a mechanical semiautomatic eye model for evaluation of intraocular lenses T2 - Proc.SPIE 8936, Design and Quality for Biomedical Technologies VII KW - Mechanical Eye Y1 - ER - TY - GEN A1 - Traxler, Lukas T1 - Klare Sicht nach Grauem Star KW - Intraocular Lenses KW - Cataract KW - Testing method Y1 - ER - TY - JOUR A1 - Trisko, Johanna A1 - Fleck, Johanna A1 - Kau, Silvio A1 - Oesterreicher, Johannes A1 - Holnthoner, Wolfgang T1 - Lymphatic and Blood Endothelial Extracellular Vesicles: A Story Yet to Be Written JF - Life N2 - Extracellular vesicles (EVs), such as exosomes, microvesicles, and apoptotic bodies, are cell-derived, lipid bilayer-enclosed particles mediating intercellular communication and are therefore vital for transmitting a plethora of biological signals. The vascular endothelium substantially contributes to the circulating particulate secretome, targeting important signaling pathways that affect blood cells and regulate adaptation and plasticity of endothelial cells in a paracrine manner. Different molecular signatures and functional properties of endothelial cells reflect their heterogeneity among different vascular beds and drive current research to understand varying physiological and pathological effects of blood and lymphatic endothelial EVs. Endothelial EVs have been linked to the development and progression of various vascular diseases, thus having the potential to serve as biomarkers and clinical treatment targets. This review aims to provide a brief overview of the human vasculature, the biology of extracellular vesicles, and the current knowledge of endothelium-derived EVs, including their potential role as biomarkers in disease development. KW - Tissue Engineering KW - Endothelial Cells KW - vascularization KW - extracellular vesicles KW - lymphatic endothelial cells Y1 - VL - 2022 IS - 12(5) SP - 654 ER - TY - JOUR A1 - Ferner-Ortner-Bleckmann, Judith A1 - Huber-Gries, Carina A1 - Pavkov-Keller, Tea A1 - Keller, Walter A1 - Mader, Christoph A1 - Ilk, Nicola A1 - Sleytr, Uwe B. A1 - Egelseer, Eva-Maria T1 - The high-molecular-mass amylase (HMMA) of Geobacillus stearothermophilus ATCC 12980 interacts with the cell wall components by virtue of three specific binding regions JF - Molecular Microbiology KW - Cells Y1 - 2019 IS - 72(6) SP - 1448 EP - 1461 ER - TY - CHAP A1 - Pfützner, Helmut A1 - Kaniusas, Eugenijus A1 - Kosel, Jürgen A1 - Mehnen, Lars A1 - Meydan, Turgut A1 - Borza, Firuta A1 - Vazquez, Manuel A1 - Rohn, Michael A1 - Marquardt, Bernd T1 - First Magnetic Materials with Sensitivity for the Physical Quantity of 'Curvature' T2 - 4th Japanese Mediterranean Workshop on Applied Electromagnetic Engineering for Magnetic, Superconducting and Nano Materials KW - Magnetic KW - Materials Y1 - 2019 SP - 177 EP - 178 ER - TY - GEN A1 - Liousia, Varvara A1 - Salzer, Elias A1 - Mandt, Denise A1 - Rünzler, Dominik T1 - The impact of ethanol in vitro and in vivo: a comparative study KW - In Vivo KW - In Vitro KW - Ethanol Y1 - 2018 ER - TY - JOUR A1 - Ghalamkarpour, A. A1 - Holnthoner, Wolfgang A1 - Saharinen, Pipsa A1 - Boon, Laurence M A1 - Mulliken, J B A1 - Alitalo, Kari T1 - Recessive primary congenital lymphoedema caused by a VEGFR3 mutation JF - Journal of Medical Genetics KW - Lymphoedema Y1 - 2019 IS - 46(6) SP - 399 EP - 404 ER - TY - JOUR A1 - Bayer, Natascha A1 - Hirnschall, Nino A1 - Traxler, Lukas A1 - Drauschke, Andreas A1 - Find, Oliver T1 - Analysis of customized ocular data and wave front aberrations concerning their deviations from generic eye models JF - Proceedings der Dreiländertagung der biomedizinischen Technik (BMT) KW - Mechanical Eye Y1 - 2018 ER - TY - JOUR A1 - Sayer, Simon A1 - Zandrini, Tommaso A1 - Markovic, Marica A1 - Van Hoorick, Jasper A1 - Van Vlierberghe, Sandra A1 - Baudis, Stefan A1 - Holnthoner, Wolfgang A1 - Ovsianikov, Aleksandr T1 - Guiding cell migration in 3D with high-resolution photografting JF - Scientific Reports N2 - Multi-photon lithography (MPL) has proven to be a suitable tool to precisely control the microenvironment of cells in terms of the biochemical and biophysical properties of the hydrogel matrix. In this work, we present a novel method, based on multi-photon photografting of 4,4′-diazido-2,2′-stilbenedisulfonic acid (DSSA), and its capabilities to induce cell alignment, directional cell migration and endothelial sprouting in a gelatin-based hydrogel matrix. DSSA-photografting allows for the fabrication of complex patterns at a high-resolution and is a biocompatible, universally applicable and straightforward process that is comparably fast. We have demonstrated the preferential orientation of human adipose-derived stem cells (hASCs) in response to a photografted pattern. Co-culture spheroids of hASCs and human umbilical vein endothelial cells (HUVECs) have been utilized to study the directional migration of hASCs into the modified regions. Subsequently, we have highlighted the dependence of endothelial sprouting on the presence of hASCs and demonstrated the potential of photografting to control the direction of the sprouts. MPL-induced DSSA-photografting has been established as a promising method to selectively alter the microenvironment of cells. KW - Tissue Engineering KW - Cell migration KW - photografting Y1 - VL - 2022 IS - 12(1), 10196 SP - 8626 ER - TY - JOUR A1 - Hromada, Carina A1 - Hartmann, Jaana A1 - Oesterreicher, Johannes A1 - Stoiber, Anton A1 - Daerr, Anna A1 - Schädl, Barbara A1 - Priglinger, Eleni A1 - Teuschl-Woller, Andreas H. A1 - Holnthoner, Wolfgang A1 - Heinzel, Johannes Christoph A1 - Hercher, David T1 - Occurrence of Lymphangiogenesis in Peripheral Nerve Autografts Contrasts Schwann Cell-Induced Apoptosis of Lymphatic Endothelial Cells In Vitro JF - Biomolecules N2 - Peripheral nerve injuries pose a major clinical concern world-wide, and functional recovery after segmental peripheral nerve injury is often unsatisfactory, even in cases of autografting. Although it is well established that angiogenesis plays a pivotal role during nerve regeneration, the influence of lymphangiogenesis is strongly under-investigated. In this study, we analyzed the presence of lymphatic vasculature in healthy and regenerated murine peripheral nerves, revealing that nerve autografts contained increased numbers of lymphatic vessels after segmental damage. This led us to elucidate the interaction between lymphatic endothelial cells (LECs) and Schwann cells (SCs) in vitro. We show that SC and LEC secretomes did not influence the respective other cell types' migration and proliferation in 2D scratch assay experiments. Furthermore, we successfully created lymphatic microvascular structures in SC-embedded 3D fibrin hydrogels, in the presence of supporting cells; whereas SCs seemed to exert anti-lymphangiogenic effects when cultured with LECs alone. Here, we describe, for the first time, increased lymphangiogenesis after peripheral nerve injury and repair. Furthermore, our findings indicate a potential lymph-repellent property of SCs, thereby providing a possible explanation for the lack of lymphatic vessels in the healthy endoneurium. Our results highlight the importance of elucidating the molecular mechanisms of SC-LEC interaction. KW - Tissue Engineering KW - peripheral nerve regeneration KW - lymphangiogenesis KW - Schwann cells KW - lymphatic endothelial cells Y1 - VL - 2022 IS - 12, 6 SP - 820 ER - TY - JOUR A1 - Lauer, Henrik A1 - Prahm, Cosima A1 - Thiel, Johannes Tobias A1 - Kolbenschlag, Jonas A1 - Daigeler, Adrien A1 - Hercher, David A1 - Heinzel, Johannes Christoph T1 - The Grasping Test Revisited: A Systematic Review of Functional Recovery in Rat Models of Median Nerve Injury JF - Biomedicines N2 - The rat median nerve model is a well-established and frequently used model for peripheral nerve injury and repair. The grasping test is the gold-standard to evaluate functional recovery in this model. However, no comprehensive review exists to summarize the course of functional recovery in regard to the lesion type. According to PRISMA-guidelines, research was performed, including the databases PubMed and Web of Science. Groups were: (1) crush injury, (2) transection with end-to-end or with (3) end-to-side coaptation and (4) isogenic or acellular allogenic grafting. Total and respective number, as well as rat strain, type of nerve defect, length of isogenic or acellular allogenic allografts, time at first signs of motor recovery (FSR) and maximal recovery grasping strength (MRGS), were evaluated. In total, 47 articles met the inclusion criteria. Group I showed earliest signs of motor recovery. Slow recovery was observable in group III and in graft length above 25 mm. Isografts recovered faster compared to other grafts. The onset and course of recovery is heavily dependent from the type of nerve injury. The grasping test should be used complementary in addition to other volitional and non-volitional tests. Repetitive examinations should be planned carefully to optimize assessment of valid and reliable data. KW - Tissue Engineering KW - Median Nerve Injury KW - Nerve Regeneration Y1 - VL - 2022 IS - 10(8) SP - 1878 ER - TY - JOUR A1 - Rothbauer, Mario A1 - Byrne, Ruth A. A1 - Schobesberger, Silvia A1 - Olmos Calvo, Isabel A1 - Fischer, Anita A1 - Reihs, Eva I. A1 - Spitz, Sarah A1 - Bachmann, Barbara A1 - Sevelda, Florian A1 - Holinka, Johannes A1 - Holnthoner, Wolfgang A1 - Redl, Heinz A1 - Toegel, Stefan A1 - Windhager, Reinhard A1 - Kiener, Hans P. A1 - Ertl, Peter T1 - Establishment of a human three-dimensional chip-based chondro-synovial coculture joint model for reciprocal cross talk studies in arthritis research JF - Lab on a Chip N2 - Rheumatoid arthritis is characterised by a progressive, intermittent inflammation at the synovial membrane, which ultimately leads to the destruction of the synovial joint. The synovial membrane as the joint capsule's inner layer is lined with fibroblast-like synoviocytes that are the key player supporting persistent arthritis leading to bone erosion and cartilage destruction. While microfluidic models that model molecular aspects of bone erosion between bone-derived cells and synoviocytes have been established, RA's synovial-chondral axis has not yet been realised using a microfluidic 3D model based on human patient in vitro cultures. Consequently, we established a chip-based three-dimensional tissue coculture model that simulates the reciprocal cross talk between individual synovial and chondral organoids. When co-cultivated with synovial organoids, we could demonstrate that chondral organoids induce a higher degree of cartilage physiology and architecture and show differential cytokine response compared to their respective monocultures highlighting the importance of reciprocal tissue-level cross talk in the modelling of arthritic diseases. KW - Tissue Engineering KW - coculture joint model KW - arthritis KW - human three-dimensional chip Y1 - VL - 2021 IS - 21 SP - 4128 EP - 4143 ER - TY - GEN A1 - Liousia, Varvara A1 - Rünzler, Dominik T1 - Stage- and dose-dependent effects of methanol and ethanol on the locomotor activity of zebrafish larvae KW - Locomotor Activity KW - Zebrafish Y1 - 2018 ER - TY - JOUR A1 - Henderson, Ben A1 - Slingers, Gitte A1 - Pedrotti, Michele A1 - Pugliese, Giovanni A1 - Malaskova, Michaela A1 - Bryant, Luke A1 - Lomonaco, Tommaso A1 - Ghimenti, Silvia A1 - Moreno, Sergi A1 - Cordell, Rebecca A1 - Harren, Frans J M A1 - Schubert, Jochen A1 - Mayhew, Chris A A1 - Wilde, Michael A1 - Di Francesco, Fabio A1 - Koppen, Gudrun A1 - Beauchamp, Jonathan D A1 - Cristescu, Simona M T1 - The peppermint breath test benchmark for PTR-MS and SIFT-MS JF - Journal of Breath Research N2 - A major challenge for breath research is the lack of standardization in sampling and analysis. To address this, a test that utilizes a standardized intervention and a defined study protocol has been proposed to explore disparities in breath research across different analytical platforms and to provide benchmark values for comparison. Specifically, the Peppermint Experiment involves the targeted analysis in exhaled breath of volatile constituents of peppermint oil after ingestion of the encapsulated oil. Data from the Peppermint Experiment performed by proton transfer reaction mass spectrometry (PTR-MS) and selected ion flow tube mass spectrometry (SIFT-MS) are presented and discussed herein, including the product ions associated with the key peppermint volatiles, namely limonene, α- and β-pinene, 1,8-cineole, menthol, menthone and menthofuran. The breath washout profiles of these compounds from 65 individuals were collected, comprising datasets from five PTR-MS and two SIFT-MS instruments. The washout profiles of these volatiles were evaluated by comparing the log-fold change over time of the product ion intensities associated with each volatile. Benchmark values were calculated from the lower 95% confidence interval of the linear time-to-washout regression analysis for all datasets combined. Benchmark washout values from PTR-MS analysis were 353 min for the sum of monoterpenes and 1,8-cineole (identical product ions), 173 min for menthol, 330 min for menthofuran, and 218 min for menthone; from SIFT-MS analysis values were 228 min for the sum of monoterpenes, 281 min for the sum of monoterpenes and 1,8-cineole, and 370 min for menthone plus 1,8-cineole. Large inter- and intra-dataset variations were observed, whereby the latter suggests that biological variability plays a key role in how the compounds are absorbed, metabolized and excreted from the body via breath. This variability seems large compared to the influence of sampling and analytical procedures, but further investigations are recommended to clarify the effects of these factors. KW - standardization KW - breathomics KW - peppermint KW - benchmark KW - TR-MS Y1 - U6 - http://dx.doi.org/https://doi.org/10.1088/1752-7163/ac1fcf IS - 15 SP - Artikelnr. 046005 ER - TY - GEN A1 - Friedrich, Robin A1 - Lakic, Nevana A1 - Prähauser, Linda A1 - Schweitzer, Karoline A1 - Olscher, Christoph A1 - Monforte Vila, Xavier A1 - Leitner, Rita A1 - Gepp, Barbara T1 - Effects of Plastic on the Freshwater Snail Biomphalaria Glabrata T2 - SETAC Europe 32nd Annual Meeting in Copenhagen, Denmark from 15 - 19. May 2022 KW - Ecotoxicology KW - Biomphalaria Glabrata Y1 - ER - TY - GEN A1 - Nemec, Iris A1 - Frohner, Matthias T1 - How can life science students, especially biomedical engineering students, benefit from the extra-curricular offerings and systems already established in other scientific fields? T2 - Abstracts of the 2022 Joint Annual Conference of the Austrian (ÖGBMT), German (VDE DGBMT) and Swiss (SSBE) Societies for Biomedical Engineering, including the 14th Vienna International Workshop on Functional Electrical Stimulation KW - extra-curricular offerings KW - education Y1 - U6 - http://dx.doi.org/https://doi.org/10.1515/bmt-2022-2001 SP - 348 ER - TY - GEN A1 - Nemec, Iris A1 - Malaskova, Michaela A1 - Pereira, Luis A1 - Pavao, Joao A1 - Frohner, Matthias T1 - Experiences of intercultural teaching activities in the field of eHealth T2 - Abstracts of the 2022 Joint Annual Conference of the Austrian (ÖGBMT), German (VDE DGBMT) and Swiss (SSBE) Societies for Biomedical Engineering, including the 14th Vienna International Workshop on Functional Electrical Stimulation KW - intercultural teaching KW - eHealth Y1 - U6 - http://dx.doi.org/https://doi.org/10.1515/bmt-2022-2001 SP - 351 ER - TY - GEN A1 - Traxler, Lukas A1 - Balz, Andrea T1 - Current Advances in the Optical Characterization of Intraocular Lenses T2 - Abstracts of the 2022 Joint Annual Conference of the Austrian (ÖGBMT), German (VDE DGBMT) and Swiss (SSBE) Societies for Biomedical Engineering, including the 14th Vienna International Workshop on Functional Electrical Stimulation KW - Intraocular Lenses Y1 - U6 - http://dx.doi.org/https://doi.org/10.1515/bmt-2022-2001 SP - 102 ER - TY - JOUR A1 - Ashmwe, Mohamed A1 - Posa, Katja A1 - Rührnößl, Alexander A1 - Heinzel, Johannes Christoph A1 - Heimel, Patrick A1 - Mock, Michael A1 - Schädl, Barbara A1 - Keibl, Claudia A1 - Couillard-Despres, Sebastien A1 - Redl, Heinz A1 - Mittermayr, Rainer A1 - Hercher, David T1 - Effects of Extracorporeal Shockwave Therapy on Functional Recovery and Circulating miR-375 and miR-382-5p after Subacute and Chronic Spinal Cord Contusion Injury in Rats JF - Biomedicines N2 - Extracorporeal shockwave therapy (ESWT) can stimulate processes to promote regeneration, including cell proliferation and modulation of inflammation. Specific miRNA expression panels have been established to define correlations with regulatory targets within these pathways. This study aims to investigate the influence of low-energy ESWT-applied within the subacute and chronic phase of SCI (spinal cord injury) on recovery in a rat spinal cord contusion model. Outcomes were evaluated by gait analysis, µCT and histological analysis of spinal cords. A panel of serum-derived miRNAs after SCI and after ESWT was investigated to identify injury-, regeneration- and treatment-associated expression patterns. Rats receiving ESWT showed significant improvement in motor function in both a subacute and a chronic experimental setting. This effect was not reflected in changes in morphology, µCT-parameters or histological markers after ESWT. Expression analysis of various miRNAs, however, revealed changes after SCI and ESWT, with increased miR-375, indicating a neuroprotective effect, and decreased miR-382-5p potentially improving neuroplasticity via its regulatory involvement with BDNF. We were able to demonstrate a functional improvement of ESWT-treated animals after SCI in a subacute and chronic setting. Furthermore, the identification of miR-375 and miR-382-5p could potentially provide new targets for therapeutic intervention in future studies. KW - Tissue Engineering KW - ESWT KW - Spinal Cord Injury Y1 - U6 - http://dx.doi.org/https://doi.org/10.3390/biomedicines10071630 VL - 2022 IS - 10(7) SP - 1630 ER - TY - JOUR A1 - Hanetseder, Dominik A1 - Levstek, Tina A1 - Teuschl-Woller, Andreas A1 - Frank, Julia Katharina A1 - Schaedl, Barbara A1 - Redl, Heinz A1 - Marolt Presen, Darja T1 - Engineering of extracellular matrix from human iPSC-mesenchymal progenitors to enhance osteogenic capacity of human bone marrow stromal cells independent of their age JF - Front Bioeng Biotechnol N2 - Regeneration of bone defects is often limited due to compromised bone tissue physiology. Previous studies suggest that engineered extracellular matrices enhance the regenerative capacity of mesenchymal stromal cells. In this study, we used human-induced pluripotent stem cells, a scalable source of young mesenchymal progenitors (hiPSC-MPs), to generate extracellular matrix (iECM) and test its effects on the osteogenic capacity of human bone-marrow mesenchymal stromal cells (BMSCs). iECM was deposited as a layer on cell culture dishes and into three-dimensional (3D) silk-based spongy scaffolds. After decellularization, iECM maintained inherent structural proteins including collagens, fibronectin and laminin, and contained minimal residual DNA. Young adult and aged BMSCs cultured on the iECM layer in osteogenic medium exhibited a significant increase in proliferation, osteogenic marker expression, and mineralization as compared to tissue culture plastic. With BMSCs from aged donors, matrix mineralization was only detected when cultured on iECM, but not on tissue culture plastic. When cultured in 3D iECM/silk scaffolds, BMSCs exhibited significantly increased osteogenic gene expression levels and bone matrix deposition. iECM layer showed a similar enhancement of aged BMSC proliferation, osteogenic gene expression, and mineralization compared with extracellular matrix layers derived from young adult or aged BMSCs. However, iECM increased osteogenic differentiation and decreased adipocyte formation compared with single protein substrates including collagen and fibronectin. Together, our data suggest that the microenvironment comprised of iECM can enhance the osteogenic activity of BMSCs, providing a bioactive and scalable biomaterial strategy for enhancing bone regeneration in patients with delayed or failed bone healing. KW - aging KW - iPSCs KW - osteogenic differentiation KW - bone marrow stromal cells KW - extracellular matrix Y1 - U6 - http://dx.doi.org/https://doi.org/10.3389/fbioe.2023.1214019 VL - 11 ER - TY - JOUR A1 - Bernhard, Jonathan C A1 - Marolt Presen, Darja A1 - Li, Ming A1 - Monforte, Xavier A1 - Ferguson, James A1 - Leinfellner, Gabriele A1 - Heimel, Patrick A1 - Betti, Susanne L A1 - Shu, Sharon A1 - Teuschl-Woller, Andreas H A1 - Tangl, Stefan A1 - Redl, Heinz A1 - Vunjak-Novakovic, Gordana T1 - Effects of Endochondral and Intramembranous Ossification Pathways on Bone Tissue Formation and Vascularization in Human Tissue-Engineered Grafts JF - Cells N2 - Bone grafts can be engineered by differentiating human mesenchymal stromal cells (MSCs) via the endochondral and intramembranous ossification pathways. We evaluated the effects of each pathway on the properties of engineered bone grafts and their capacity to drive bone regeneration. Bone-marrow-derived MSCs were differentiated on silk scaffolds into either hypertrophic chondrocytes (hyper) or osteoblasts (osteo) over 5 weeks of in vitro cultivation, and were implanted subcutaneously for 12 weeks. The pathways' constructs were evaluated over time with respect to gene expression, composition, histomorphology, microstructure, vascularization and biomechanics. Hypertrophic chondrocytes expressed higher levels of osteogenic genes and deposited significantly more bone mineral and proteins than the osteoblasts. Before implantation, the mineral in the hyper group was less mature than that in the osteo group. Following 12 weeks of implantation, the hyper group had increased mineral density but a similar overall mineral composition compared with the osteo group. The hyper group also displayed significantly more blood vessel infiltration than the osteo group. Both groups contained M2 macrophages, indicating bone regeneration. These data suggest that, similar to the body's repair processes, endochondral pathway might be more advantageous when regenerating large defects, whereas intramembranous ossification could be utilized to guide the tissue formation pattern with a scaffold architecture. KW - bone tissue engineering KW - endochondral KW - mesenchymal stromal cells KW - ossification KW - intramembranous Y1 - U6 - http://dx.doi.org/10.3390/cells11193070 VL - 11 IS - 19:3070 ER - TY - JOUR A1 - Gollmann-Tepeköylü, Can A1 - Graber, Michael A1 - Hirsch, Jakob A1 - Mair, Sophia A1 - Naschberger, Andreas A1 - Pölzl, Leo A1 - Nägele, Felix A1 - Kirchmair, Elke A1 - Degenhart, Gerald A1 - Demetz, Egon A1 - Hilbe, Richard A1 - Chen, Hao-Yu A1 - Engert, James C A1 - Böhm, Anna A1 - Franz, Nadja A1 - Lobenwein, Daniela A1 - Lener, Daniela A1 - Fuchs, Christiane A1 - Weihs, Anna A1 - Töchterle, Sonja A1 - Vogel, Georg F A1 - Schweiger, Victor A1 - Eder, Jonas A1 - Pietschmann, Peter A1 - Seifert, Markus A1 - Kronenberg, Florian A1 - Coassin, Stefan A1 - Blumer, Michael A1 - Hackl, Hubert A1 - Meyer, Dirk A1 - Feuchtner, Gudrun A1 - Kirchmair, Rudolf A1 - Troppmair, Jakob A1 - Krane, Markus A1 - Weiss, Günther A1 - Tsimikas, Sotirios A1 - Thanassoulis, George A1 - Grimm, Michael A1 - Rupp, Bernhard A1 - Huber, Lukas A A1 - Zhang, Shen-Ying A1 - Casanova, Jean-Laurent A1 - Tancevski, Ivan A1 - Holfeld, Johannes T1 - Toll-Like Receptor 3 Mediates Aortic Stenosis Through a Conserved Mechanism of Calcification JF - Circulation KW - Toll-like receptor 3 KW - aortic valve disease KW - biglycan KW - extracellular matrix KW - osteogenesis Y1 - U6 - http://dx.doi.org/10.1161/CIRCULATIONAHA.122.063481 VL - 147 IS - 20 SP - 1518 EP - 1533 ER - TY - GEN A1 - Balz, Andrea A1 - Langer, Sarah A1 - Frohner, Matthias A1 - Forjan, Mathias T1 - Development of Internationalized Teaching and Training Modules for Healthcare Professionals T2 - Abstracts of the 2022 Joint Annual Conference of the Austrian (ÖGBMT), German (VDE DGBMT) and Swiss (SSBE) Societies for Biomedical Engineering, including the 14th Vienna International Workshop on Functional Electrical Stimulation KW - Internationalized Teaching KW - Healthcare Y1 - U6 - http://dx.doi.org/https://doi.org/10.1515/bmt-2022-2001 SP - 353 ER - TY - JOUR A1 - Xu, Yingyang A1 - Gepp, Barbara A1 - Lengger, Nina A1 - Yin, Jia A1 - Breiteneder, Heimo T1 - Identification of probable pectinesterase as a major allergen of pollen of the Asian white birch (Betula platyphylla) in northern China JF - Asian Pac J Allergy Immunol KW - birch pollen allergy KW - betula platyphylla KW - chinese population KW - major allergen KW - pectinesterase Y1 - U6 - http://dx.doi.org/10.12932/AP-100722-1409 ER - TY - GEN A1 - Eidi, Nada A1 - Balz, Andrea A1 - Forjan, Mathias T1 - MedTech-mR - Creating a Virtual Enviroment for Medical Training and Room Planning T2 - Abstracts of the 2022 Joint Annual Conference of the Austrian (ÖGBMT), German (VDE DGBMT) and Swiss (SSBE) Societies for Biomedical Engineering, including the 14th Vienna International Workshop on Functional Electrical Stimulation KW - Medical Training KW - Virtual Environment Y1 - U6 - http://dx.doi.org/https://doi.org/10.1515/bmt-2022-2001 SP - 349 ER - TY - GEN A1 - Malaskova, Michaela A1 - Forjan, Mathias T1 - Current topics in Life Science Engineering lectures T2 - Abstracts of the 2022 Joint Annual Conference of the Austrian (ÖGBMT), German (VDE DGBMT) and Swiss (SSBE) Societies for Biomedical Engineering, including the 14th Vienna International Workshop on Functional Electrical Stimulation KW - Life Science Engineering KW - Teaching Y1 - U6 - http://dx.doi.org/https://doi.org/10.1515/bmt-2022-2001 SP - 350 ER - TY - JOUR A1 - Romanelli, Pasquale A1 - Bieler, Lara A1 - Heimel, Patrick A1 - Škokić, Siniša A1 - Jakubecova, Dominika A1 - Kreutzer, Christina A1 - Zaunmair, Pia A1 - Smolčić, Tomislav A1 - Benedetti, Bruno A1 - Rohde, Eva A1 - Gimona, Mario A1 - Hercher, David A1 - Dobrivojević Radmilović, Marina A1 - Couillard-Despres, Sebastien T1 - Enhancing Functional Recovery Through Intralesional Application of Extracellular Vesicles in a Rat Model of Traumatic Spinal Cord Injury JF - Front Cell Neurosci N2 - Local inflammation plays a pivotal role in the process of secondary damage after spinal cord injury. We recently reported that acute intravenous application of extracellular vesicles (EVs) secreted by human umbilical cord mesenchymal stromal cells dampens the induction of inflammatory processes following traumatic spinal cord injury. However, systemic application of EVs is associated with delayed delivery to the site of injury and the necessity for high doses to reach therapeutic levels locally. To resolve these two constraints, we injected EVs directly at the lesion site acutely after spinal cord injury. We report here that intralesional application of EVs resulted in a more robust improvement of motor recovery, assessed with the BBB score and sub-score, as compared to the intravenous delivery. Moreover, the intralesional application was more potent in reducing inflammation and scarring after spinal cord injury than intravenous administration. Hence, the development of EV-based therapy for spinal cord injury should aim at an early application of vesicles close to the lesion. KW - exosomes KW - inflammation KW - locomotion KW - neuroimaging KW - motor function Y1 - U6 - http://dx.doi.org/10.3389/fncel.2021.795008 VL - 15 ER - TY - JOUR A1 - Feichtinger, Xaver A1 - Heimel, Patrick A1 - Tangl, Stefan A1 - Keibl, Claudia A1 - Nürnberger, Sylvia A1 - Schanda, Jakob Emanuel A1 - Hercher, David A1 - Kocijan, Roland A1 - Redl, Heinz A1 - Grillari, Johannes A1 - Fialka, Christian A1 - Mittermayr, Rainer T1 - Improved biomechanics in experimental chronic rotator cuff repair after shockwaves is not reflected by bone microarchitecture JF - PLoS One KW - chronic rotator cuff repair KW - bone microarchitecture Y1 - U6 - http://dx.doi.org/10.1371/journal.pone.0262294 VL - 17 IS - 1 ER - TY - THES A1 - Tomasch, Janine T1 - Strategies to improve the myogenic outcome of skeletal muscle tissue engineering approaches through optimization of biomaterial properties and mechanical stimuli KW - muscle KW - bioreactor KW - tissue engineering KW - fibrin KW - biomaterial Y1 - ER - TY - GEN A1 - Langer, Sarah A1 - Nemec, Iris A1 - Kollmitzer, Josef A1 - Scherer, Matthias A1 - Martinek, Johannes T1 - Vergleich des decompositionierten und des überlagerten Elektromyogramms zur Analyse der Muskelermüdung N2 - Ziel dieser Studie war das überlagerte Elektromyogramm (ueEMG) und das decompositionierte (dEMG) auf deren Reliabilität und Aussagekraft zu überprüfen. Hierfür vollzogen zehn gesunde männliche Probanden zu drei Testzeitpunkten isometrische Ermüdungsmessungen. Hintergrund Bei der Messung des ueEMG werden die Motor Units Aktionspotentiale (MUAPS) elektrisch überlagert. Physiologische Muskelermüdung zeigt sich hier unter anderem in der Veränderung des Frequenzspektrums und der Signalamplitude. Letzteres steigt bei Ermüdung an, wohingegen die mediane Frequenz (MF) sinkt. Eine weitere Möglichkeit die Muskelermüdung mittels Oberflächen-EMG zu ermitteln ist die Anwendung des dEMGs. Dieses ermöglicht mithilfe einer Mustererkennungssoftware einzelne MUAPS zu erkennen. Studien zeigten, dass aktive Motor Units (MU) bei wiederholten oder anhaltenden submaximalen Kontraktionen als Muskelermüdung ihre Feuerungsrate erhöhen und neue MU rekrutiert werden. Bisher wurden diese Methoden jeweils einzeln betrachtet. Um sicherzustellen welcher Ansatz für klinische Daten geeigneter ist, wurden Datensätze zu beiden Methoden gleichzeitig generiert und hinsichtlich ihrer Aussagekraft und Wiederholbarkeit mit statistischen Mitteln verglichen. KW - Elektromyogramm KW - Rehabilitationstechnik Y1 - 2022 ER -