004 Datenverarbeitung; Informatik
Refine
Year of publication
Document Type
- Lecture (58)
- Conference Proceeding (37)
- Article (13)
- Part of a Book (4)
- Doctoral Thesis (1)
- Report (1)
Keywords
- Education (14)
- Autonomous Driving (13)
- Usability (9)
- Computer Environment (6)
- Language Learning (6)
- Mobile Devices (6)
- ChatGPT (5)
- eHealth (5)
- Health Applications (4)
- Security (4)
Department
Open Data Workshop
(2023)
ChatGPT – Freund oder Feind?
(2023)
ChatGPT 4.0 – friend or foe?
(2023)
ChatGPT 4.0 – friend or foe?
(2023)
ChatGPT – friend or foe?
(2023)
ChatGPT – Freund oder Feind?
(2023)
As IoT systems have increased the number of deployed embedded devices drastically and most of these devices are used in safety or security critical environments, the education of embedded software engineers is more important than ever. A critical part of their education is the development of their intuition for secure and safe software. In this paper 1 1 This research was funded by the city of Vienna (MA-23 call 21, project no. 9). we present an evaluation system used to generate fast and accurate feedback for student submission in, but not limited to, embedded software development courses. The system can be used as a first feedback loop to outline to the students where problems exist in their code and give them the opportunity to analyze and correct their errors. These extra steps ensure that the students can and will be notified early about their mistakes and can search for correct solutions, supporting the student's learning process. We present the implementation of the system and analyze its deployment in a microcontroller software development lecture. This analysis was done by means of surveys of the students and lecturers as well as a statistical analysis of the student submissions. The results show that the students made use of this extra features and even would prefer to have this feedback in other software development lectures as well.
MS SPIDOC is a novel sample delivery system designed for single (isolated) particle imaging at X-ray Free-Electron Lasers
that is adaptable towards most large-scale facility beamlines. Biological samples can range from small proteins to MDa
particles. Following nano-electrospray ionization, ionic samples can be m/z-filtered and structurally separated before being
oriented at the interaction zone. Here, we present the simulation package developed alongside this prototype. The first part
describes how the front-to-end ion trajectory simulations have been conducted. Highlighted is a quadrant lens; a simple but
efficient device that steers the ion beam within the vicinity of the strong DC orientation field in the interaction zone to ensure
spatial overlap with the X-rays. The second part focuses on protein orientation and discusses its potential with respect to
diffractive imaging methods. Last, coherent diffractive imaging of prototypical T = 1 and T = 3 norovirus capsids is shown.
We use realistic experimental parameters from the SPB/SFX instrument at the European XFEL to demonstrate that low-
resolution diffractive imaging data (q < 0.3 nm −1 ) can be collected with only a few X-ray pulses. Such low-resolution data
are sufficient to distinguish between both symmetries of the capsids, allowing to probe low abundant species in a beam if
MS SPIDOC is used as sample delivery.