2018/2019
Refine
Document Type
- Lecture (48)
- Conference Proceeding (47)
- Article (44)
- Book (9)
- Part of a Book (9)
- Doctoral Thesis (4)
- Report (1)
Keywords
- Tissue Engineering (13)
- Education (9)
- Robotics (8)
- Photovoltaics (6)
- Security (6)
- Teaching (6)
- Ecotoxicology (5)
- Interoperability (5)
- Smart City (5)
- Biomedical Engineering (4)
Department
Comparison of breathing patterns for aerosol inhalation using an electro-mechanical lung simulator
(2018)
Changes of particle deposition caused by different breathing patterns during active lung simulation
(2019)
Repopulation of an auricular cartilage scaffold, AuriScaff, perforated with an enzyme combination
(2019)
Biomaterials currently in use for articular cartilage regeneration do not mimic the composition or architecture of hyaline cartilage, leading to the formation of repair tissue with inferior characteristics. In this study we demonstrate the use of "AuriScaff", an enzymatically perforated bovine auricular cartilage scaffold, as a novel biomaterial for repopulation with regenerative cells and for the formation of high-quality hyaline cartilage. AuriScaff features a traversing channel network, generated by selective depletion of elastic fibers, enabling uniform repopulation with therapeutic cells. The complex collagen type II matrix is left intact, as observed by immunohistochemistry, SEM and TEM. The compressive modulus is diminished, but three times higher than in the clinically used collagen type I/III scaffold that served as control. Seeding tests with human articular chondrocytes (hAC) alone and in co-culture with human adipose-derived stromal/stem cells (ASC) confirmed that the network enabled cell migration throughout the scaffold. It also guides collagen alignment along the channels and, due to the generally traverse channel alignment, newly deposited cartilage matrix corresponds with the orientation of collagen within articular cartilage. In an osteochondral plug model, AuriScaff filled the complete defect with compact collagen type II matrix and enabled chondrogenic differentiation inside the channels. Using adult articular chondrocytes from bovine origin (bAC), filling of even deep defects with high-quality hyaline-like cartilage was achieved after 6 weeks in vivo. With its composition and spatial organization, AuriScaff provides an optimal chondrogenic environment for therapeutic cells to treat cartilage defects and is expected to improve long-term outcome by channel-guided repopulation followed by matrix deposition and alignment. STATEMENT OF SIGNIFICANCE: After two decades of tissue engineering for cartilage regeneration, there is still no optimal strategy available to overcome problems such as inconsistent clinical outcome, early and late graft failures. Especially large defects are dependent on biomaterials and their scaffolding, guiding and protective function. Considering the currently used biomaterials, structure and mechanical properties appear to be insufficient to fulfill this task. The novel scaffold developed within this study is the first approach enabling the use of dense cartilage matrix, repopulate it via channels and provide the cells with a compact collagen type II environment. Due to its density, it also provides better mechanical properties than materials currently used in clinics. We therefore think, that the auricular cartilage scaffold (AuriScaff) has a high potential to improve future cartilage regeneration approaches.
The prerequisite for a successful clinical use of autologous adipose-tissue-derived cells is the highest possible regenerative potential of the applied cell population, the stromal vascular fraction (SVF). Current isolation methods depend on high enzyme concentration, lysis buffer, long incubation steps and mechanical stress, resulting in single cell dissociation. The aim of the study was to limit cell manipulation and obtain a derivative comprising therapeutic cells (microtissue-SVF) without dissociation from their natural extracellular matrix, by employing a gentle good manufacturing practice (GMP)-grade isolation. The microtissue-SVF yielded larger numbers of viable cells as compared to the improved standard-SVF, both with low enzyme concentration and minimal dead cell content. It comprised stromal tissue compounds (collagen, glycosaminoglycans, fibroblasts), capillaries and vessel structures (CD31+, smooth muscle actin+). A broad range of cell types was identified by surface-marker characterisation, including mesenchymal, haematopoietic, pericytic, blood and lymphatic vascular and epithelial cells. Subpopulations such as supra-adventitial adipose-derived stromal/stem cells and endothelial progenitor cells were significantly more abundant in the microtissue-SVF, corroborated by significantly higher potency for angiogenic tube-like structure formation in vitro. The microtissue-SVF showed the characteristic phenotype and tri-lineage mesenchymal differentiation potential in vitro and an immunomodulatory and pro-angiogenic secretome. In vivo implantation of the microtissue-SVF combined with fat demonstrated successful graft integration in nude mice. The present study demonstrated a fast and gentle isolation by minor manipulation of liposuction material, achieving a therapeutically relevant cell population with high vascularisation potential and immunomodulatory properties still embedded in a fraction of its original matrix.