1999/2000
Refine
Keywords
- Molecular Cell Biology (1)
- Ras (1)
- protein kinase pathway (1)
Ubiquitously expressed SH2-containing tyrosine phosphatases interact physically with tyrosine kinase receptors or their substrates and relay positive mitogenic signals via the activation of the Ras-mitogen-activated protein kinase (MAPK) pathway. Conversely, the structurally related phosphatase SHP-1 is predominantly expressed in hemopoietic cells and becomes tyrosine phosphorylated upon colony-stimulating factor 1 treatment of macrophages without associating with the colony-stimulating factor 1 receptor tyrosine kinase. Mice lacking functional SHP-1 (me/me and me(v)/me(v)) develop systemic autoimmune disease with accumulation of macrophages, suggesting that SHP-1 may be a negative regulator of hemopoietic cell growth. By using macrophages expressing dominant negative Ras and the me(v)/me(v) mouse mutant, we show that SHP-1 is activated in the course of mitogenic signal transduction in a Ras-dependent manner and that its activity is necessary for the Ras-dependent activation of the MAPK pathway but not of the Raf-1 kinase. Consistent with a role for SHP-1 as an intermediate between Ras and the MEK-MAPK pathway, Ras-independent activation of the latter kinases by bacterial lipopolysaccharide occurred normally in me(v)/me(v) cells. Our results sharply accentuate the diversity of signal transduction in mammalian cells, in which the same signaling intermediates can be rearranged to form different pathways.