Eigenmittel
Refine
Year of publication
Document Type
- Article (38)
- Conference Proceeding (35)
- Lecture (17)
- Book (3)
- Doctoral Thesis (1)
- Report (1)
Keywords
- Tissue Engineering (12)
- Biomedical Engineering (10)
- eHealth (8)
- DC/DC Converter (7)
- DC/DC converter (7)
- Biomaterials (6)
- Sports Equipment Technologies (6)
- wireless sensor network (5)
- AC-AC regulator (4)
- Molecular Cell Biology (4)
Department
Lipedema is a chronic, progressive disease of adipose tissue with unknown etiology. Based on the relevance of the stromal vascular fraction (SVF) cell population in lipedema, we performed a thorough characterization of subcutaneous adipose tissue, SVF isolated thereof and the sorted populations of endothelial cells (EC), pericytes and cultured adipose-derived stromal/stem cells (ASC) of early-stage lipedema patients. We employed histological and gene expression analysis and investigated the endothelial barrier by immunofluorescence and analysis of endothelial permeability in vitro. Although there were no significant differences in histological stainings, we found altered gene expression of factors relevant for local estrogen metabolism (aromatase), preadipocyte commitment (ZNF423) and immune cell infiltration (CD11c) in lipedema on the tissue level, as well as in distinct cellular subpopulations. Machine learning analysis of immunofluorescence images of CD31 and ZO-1 revealed a morphological difference in the cellular junctions of EC cultures derived from healthy and lipedema individuals. Furthermore, the secretome of lipedema-derived SVF cells was sufficient to significantly increase leakiness of healthy human primary EC, which was also reflected by decreased mRNA expression of VE-cadherin. Here, we showed for the first time that the secretome of SVF cells creates an environment that triggers endothelial barrier dysfunction in early-stage lipedema. Moreover, since alterations in gene expression were detected on the cellular and/or tissue level, the choice of sample material is of high importance in elucidating this complex disease.
Rheumatoid arthritis is characterised by a progressive, intermittent inflammation at the synovial membrane, which ultimately leads to the destruction of the synovial joint. The synovial membrane as the joint capsule's inner layer is lined with fibroblast-like synoviocytes that are the key player supporting persistent arthritis leading to bone erosion and cartilage destruction. While microfluidic models that model molecular aspects of bone erosion between bone-derived cells and synoviocytes have been established, RA's synovial-chondral axis has not yet been realised using a microfluidic 3D model based on human patient in vitro cultures. Consequently, we established a chip-based three-dimensional tissue coculture model that simulates the reciprocal cross talk between individual synovial and chondral organoids. When co-cultivated with synovial organoids, we could demonstrate that chondral organoids induce a higher degree of cartilage physiology and architecture and show differential cytokine response compared to their respective monocultures highlighting the importance of reciprocal tissue-level cross talk in the modelling of arthritic diseases.
Coculture systems employing adipose tissue-derived mesenchymal stromal/stem cells (ASC) and endothelial cells (EC) represent a widely used technique to model vascularization. Within this system, cell-cell communication is crucial for the achievement of functional vascular network formation. Extracellular vesicles (EVs) have recently emerged as key players in cell communication by transferring bioactive molecules between cells. In this study we aimed to address the role of EVs in ASC/EC cocultures by discriminating between cells, which have received functional EV cargo from cells that have not. Therefore, we employed the Cre-loxP system, which is based on donor cells expressing the Cre recombinase, whose mRNA was previously shown to be packaged into EVs and reporter cells containing a construct of floxed dsRed upstream of the eGFP coding sequence. The evaluation of Cre induced color switch in the reporter system via EVs indicated that there is no EV-mediated RNA transmission either between EC themselves or EC and ASC. However, since Cre mRNA was not found present in EVs, it remains unclear if Cre mRNA is generally not packaged into EVs or if EVs are not taken up by the utilized cell types. Our data indicate that this technique may not be applicable to evaluate EV-mediated cell-to-cell communication in an in vitro setting using EC and ASC. Further investigations will require a functional system showing efficient and specific loading of Cre mRNA or protein into EVs.
Extracellular vesicles (EVs), such as exosomes, microvesicles, and apoptotic bodies, are cell-derived, lipid bilayer-enclosed particles mediating intercellular communication and are therefore vital for transmitting a plethora of biological signals. The vascular endothelium substantially contributes to the circulating particulate secretome, targeting important signaling pathways that affect blood cells and regulate adaptation and plasticity of endothelial cells in a paracrine manner. Different molecular signatures and functional properties of endothelial cells reflect their heterogeneity among different vascular beds and drive current research to understand varying physiological and pathological effects of blood and lymphatic endothelial EVs. Endothelial EVs have been linked to the development and progression of various vascular diseases, thus having the potential to serve as biomarkers and clinical treatment targets. This review aims to provide a brief overview of the human vasculature, the biology of extracellular vesicles, and the current knowledge of endothelium-derived EVs, including their potential role as biomarkers in disease development.
Multi-photon lithography (MPL) has proven to be a suitable tool to precisely control the microenvironment of cells in terms of the biochemical and biophysical properties of the hydrogel matrix. In this work, we present a novel method, based on multi-photon photografting of 4,4′-diazido-2,2′-stilbenedisulfonic acid (DSSA), and its capabilities to induce cell alignment, directional cell migration and endothelial sprouting in a gelatin-based hydrogel matrix. DSSA-photografting allows for the fabrication of complex patterns at a high-resolution and is a biocompatible, universally applicable and straightforward process that is comparably fast. We have demonstrated the preferential orientation of human adipose-derived stem cells (hASCs) in response to a photografted pattern. Co-culture spheroids of hASCs and human umbilical vein endothelial cells (HUVECs) have been utilized to study the directional migration of hASCs into the modified regions. Subsequently, we have highlighted the dependence of endothelial sprouting on the presence of hASCs and demonstrated the potential of photografting to control the direction of the sprouts. MPL-induced DSSA-photografting has been established as a promising method to selectively alter the microenvironment of cells.